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Motivation

Picard group in algebraic geometry

In algebraic geometry we study algebraic varieties, which are the set of solutions of
a system of polynomial equations

A variety V is equipped with a topology—a collection of subsets termed as open

subsets—and a structure sheaf O, of rings, associating a ring to each open subset
compatibly with restriction of subsets

A module over aring is a set that the ring acts on linearly, like a vector space over a
field

We refer to a sheaf of modules over 0y, as a V-module

From the tensor product @ of modules, we can define a tensor product & of
V-modules

The Picard group of V is the group of isomorphism classes of invertible V-modules
or line bundles (operation is @, identity element is 0)
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Motivation

Jacobian of a complex curve

 The Picard group can be given the structure of an algebraic variety
Pic(V)

» Varieties like Pic(V) that are also abelian groups are called abelian
varieties

. Over C, any complex abelian variety is a complex torus C¢/T" that
admits an algebraic structure

 If Cis a curve over the complex numbers, then the connected
component of the identity in Pic(C) is the Jacobian variety

 |In addition to this algebraic definition, we can give an analytic
construction of the Jacobian variety
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Motivation

Analytic construction of the Jacobian

« Given a complex curve C we have a short exact sequence of sheaves

(called the exponential sequence)

exp

7 < Op > O

* This gives rise to a long exact sequence of sheaf cohomology groups

0 — H(C, 2) - H(C, 6,) - H(C, 6%) - H(C,Z) - H'(C,6.) — ...

. The cokernel of H(C, Z) - H!(C, O ) is a complex torus C8/1" (I is
a discrete subgroup of C?)

* This torus gives an analytic construction of the Jacobian variety

* This torus is algebraic, which makes it an abelian variety
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Motivation

Higher dimensional complex varieties

 The Jacobian of a complex curve can be generalized to give an algebraic
complex torus structure to the cokernel of H'(X, Z) — H'(X, Oy) for

higher-dimensional X

 If X is smooth and projective, this construction is a complex torus because
the image of H'(X, Z) in H'(X, Oy) is discrete

« Is the cokernel of H"(X, Z) - H"(X, Oy) also a complex torus for m > 17

o Ifm> 1,

1. the image of H"(X, Z) in H"(X, Oy) is not necessarily discrete, so the
cokernel of H"(X, Z) — H"(X, Oy) is not necessarily a complex torus;

2. even if it is a complex torus, it is not necessarily algebraic



Motivation

Degree 2: the Brauer container

* If the rank of the group Pic(X) is maximal, then the cokernel of
H*(X, Z) - H*(X, Oy) is a complex torus that we denote ¢(X)

» The torsion subgroup of & (X) is isomorphic to the Brauer group
Br(X), so we call €(X) the Brauer container

e C(X) has been studied by Beauville, Shioda & Mitani, among
others

« When X is an abelian variety, € (X) has been computed up to
isogeny (a surjective morphism with finite kernel)

 Furthermore, in this case ¢ (X) is algebraic (an abelian variety)
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Motivation

Products of elliptic curves

* An elliptic curve is a 1-dimensional abelian variety, which is often
described as the solution set of an equation y2 =x’+ax+b

* We say the elliptic curve has complex multiplication (CM) if it has
more endomorphisms than just multiplication by Z

* (Schoen) A complex abelian variety X of maximal Picard rank is

(not uniquely) isomorphic to a product of pairwise isogenous CM
elliptic curves

X~E XE,X...XE,

» Inthe n = 2 case, Shioda and Mitani show that €(E; X E,) is an
elliptic curve that is isogenous to both E; and E,
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Goal

* (Schoen) A complex abelian variety X of maximal Picard rank is (not
uniquely) isomorphic to a product of pairwise isogenous CM elliptic
curves

X~E XE,X..XE

» Inthe n = 2 case, Shioda and Mitani show that €(E; X E,) is an elliptic
curve that is isogenous to both £, and E,

» We will use this concrete description of X to compute € (X) up to
iIsomorphism, via number theory

 We will show that for such X, the cokernel of H"(X, Z) — H"(X, Oy) for
all m < n is also a complex abelian variety of maximal Picard number



Roadmap

* Number theory

« Elliptic curves over C and lattices
 Complex multiplication and the ideal class group
 Computing containers

 Fields of definition

» Issues with extending to fields other than C



Number theory

Lattices in the complex numbers

A lattice I C C is the set of Z-linear
combinations of some v, w € C with v/w & R:

['=2v+2Zw = {(v,w)

Any complex elliptic curve E is isomorphic as a
Lie group to a torus C/I" for a lattice I C C

An isomorphism of elliptic curves
E=C/T,E = C/I"corresponds to a € C with
al =17

Isomorphism is homothety (rotation, scaling) of
lattices

An isogeny of elliptic curves corresponds to
a € Cwithal CTI”

Two lattices are isogenous if one is homothetic
to a sublattice of the other
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Number theory

Complex multiplication

The endomorphism ring of a lattice
IS the ring of isogenies to itself

EndI)={aeC:al CI'}

If End(I") is larger than Z we say that
the lattice/elliptic curve has complex

multiplication (CM) by End(I")
For A = (3,2 +1/—3) we have
End(A) = Z[3+/—3]

A is homothetic to

3A = (9,6 +3v/=3) C Z[3v/-3],

which is an ideal of Z[3/ —3]
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Number theory

CM elliptic curves and the class group

o If £ = C/I has CM, then I is homothetic to an ideal of
End(I') = End(F)

e Think of I as a (fractional) ideal of R = End(I"), and homothety as
multiplication by an element of R—or by a principal ideal

« The ideal class group CI(R) is the group of (invertible) fractional ideals
of R modulo principal ideals (R is the identity element)

« Homothety classes of lattices with CM by R correspond to elements of

CI(R)

« Weuse [E] = [I'] € CI(R) for the group element corresponding to the
homothety/isomorphism class of E = C/I"
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Roadmap

 Number theory
« Computing containers

e [attices and the Brauer container

Self-product example £ X E

* Brauer container of an abelian surface
e Brauer containers of abelian n-folds
e The n-container of an abelian n-fold

 Computing the m-container

e Fields of definition

* Issues with extending to fields other than C
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Computing containers
Isogeny of CM lattices

* Recall: a complex abelian variety X of maximal Picard number is
isomorphic to a product of pairwise isogenous CM elliptic curves
(Schoen)

X~E XE,X...XE

n

 \What does this mean in terms of lattices?

 IfI'"is a CM lattice with R = End(I"), then the endomorphism algebra
R ®, Q is an imaginary quadratic number field Q(y/ —d)

e In fact, R is a subring of the endomorphism algebra K = R ® ,

« Two CM elliptic curves E,, E, are isogenous if and only if the
endomorphism algebras are the same
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Computing containers

Lattices and the Brauer container

» Shioda and Mitani found that (£, X E,) is a CM elliptic curve
isogenous to both E,, £,

» To compute C(E; X E,) up to isomorphism, we’ll find
R = End(C(E, X E,)) and an element in CI(R) for the
isomorphism class [C(E; X E,)]

o It’s known that if E; = C/(v,, w;) and vV, V| Wy, W V5, Wiw, € C
span a lattice I then C(£; X E,) = C/T°
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Computing containers

Self-product example

» Consider the elliptic curve £ = C/A
corresponding to the lattice

A=(3,2++/-3)

« C(E X E) is isomorphic to an elliptic
curve E' = C/A’

« A’is spanned by
+ 3°=9

¢+ 3.Q24+v-3)=6+3y/-3
e 2+1/-32=1+4/-3




Computing containers

Self-product example

. {9,6+3v/-3,1+4y/-3)

span the lattice

A = (3,14++/-3)

« Hence G(E X E) is isomorphic
to ' = C/A’

« A, A" are not homothetic, so
EFE£2F ~=~CEXE)

 However, they are isogenous;
both have endomorphism ring

Z[3\/ —3]
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Computing containers

Brauer container of an abelian surface

« The easiest case to compute the isomorphism class [C(E, X E,)] is

* Inthat case, C(£, X E,) also has CM by R and

 More generally, if End(E;) = R,, then we can show C (£, X E,) has

- Letting E; = C/I'; we find that I'; ® R, is a lattice with CM by R,
and

[G(E, X Ep)] = [T} ® RollT> @, Ryl € CI(Ry)
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Computing containers

Brauer containers of abelian n-folds

« Recall: a complex abelian variety X of maximal Picard number is isomorphic
to a product of pairwise isogenous CM elliptic curves (Schoen)

X~E XE,X...XE,

. Computing directly with the map H*(X, Z) — H?*(X, O) we find that
cx) = || eE xE)
i<j

 This means ¢ (X) is a product of CM elliptic curves, hence an abelian variety

n
of dimension (2 )

+ In fact, the C(E; X E;) are also pairwise isogenous, so € (X) is also a
complex abelian variety of maximal Picard rank!
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Computing containers
The n-container of an abelian n-fold

« ForX = E, X ... X E_ an abelian variety of maximal Picard number,
the cokernel of H"(X, Z) - H"(X, Oy) is also a complex torus

« We call this torus ¢, (X) or the m-container
« The Brauer container €(X) is the 2-container

e If n = m, then we find similarly that ¢, (£, X ... X E ) is an elliptic
curve with CM by R, where R is

 We can compute ¢, (X) up to isomorphism as

[€,(X)] = [ | [T, ® R] € CI(R), for T, such that E; = C/T,
i=1
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Computing containers

Computing the m-container

 For m < n, we find that the m-container of X is

¢ (X) H (S:m(E,lx ><E>

- Each € (E; X ... X E, ) is a CM elliptic curve isogenous to the £,

« ¢ (X) is a product of pairwise isogenous CM elliptic curves

« Therefore, for any X which is a complex abelian variety of maximal

Picard rank, the m-containers ¢, (X) for m < dim(X) are also
complex abelian varieties of maximal Picard rank!

e In particular, ¢, _;(X) is a complex abelian variety of the same
dimension n
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Roadmap

* Number theory
e Computing containers

 Fields of definition

» Issues with extending to fields other than C

* Return to self-product example

« C(E X E) cannot be defined over the minimal field of definition
of £

* Elliptic curves and the ring class field

* Give a condition on the fields of definition of two elliptic curves
with class field theory

* Finding other interesting examples
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Field of definition

Issues extending to other fields

* Question: is there an analogue of the Brauer container for
varieties of maximal Picard number over fields other than C?

« For example, if we have an abelian surface &/ over a number
field L, is there an elliptic curve E , over L with some nice

relationship to the Brauer group of &f?

 We would expect that £, ® C = (), but sometimes no
such £, over L exists!

» This means though G (&) is algebraic (it is an abelian variety),
the construction of §(&/ ) is not-so-algebraic
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Field of definition

J-invariants of elliptic curves

« For a complex elliptic curve E defined by an equation y2 = x>+ ax+ b, the
J-invariant is

a3

4a’3 + 27b?

J(E) = 1728

« A complex elliptic curve is determined up to isomorphism by its j-invariant,
and E is always isomorphic over C to the elliptic curve defined by

23 3j(E) 2j(E)
Vo =Xx A —X + :
1728 — j(E)~ 1728 — J(E)

« Q(J(E)) is the “smallest” number field over which E can be defined

» We will give an example of an abelian surface &/ over a number field L so

that j(C(H ) € L
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Field of definition

Return to self-product example

Recall the elliptic curve E = C/A
corresponding to the lattice

A =(3,24+4/-3)

C(E X E) is isomorphic to an elliptic curve
E' = C/A" with

A, A" are not homothetic so £ % E’

By computation, Q(j(E)) = @(53\3/5)
and Q((E")) = Q((A/2)

Since J(C(E X E)) & Q(j(E)), we can
define E X E over this field
QU(E)) = @(53\?/5), but we can’t define

its Brauer container!
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Field of definition

Self-product example and the class group

« We will find other examples of an elliptic curve E such that £ can be defined
over a number field L but €(E X E) cannot, using the class group of End(E)

o Let’s look at CI(End(E)) for our previous example £ = C/A where
A=(3,2++4/-3)

e In this case, End(E) = Z[3+\/—3] and CI(Z[3\/—-3]) = Z/37

« Note that Z[34/—3] = (1, 34/—3) is the lattice corresponding to the identity
element and [E], [E]* = [C(E X E)] = [E'] are the non-identity elements

« QUC/{], 3\/—73))) = @(\3/5), which is distinct from both
QU(E)), QU(E))

« All elements of the class group have different minimal fields of definition
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Field of definition

Elliptic curves and the ring class field

« For two CM elliptic curves £, E,, we want to describe when
J(Ey) € Q(J(EY)

« For any elliptic curve E with CM by R C R ®, Q = K the extension
K(j(E)) is equal to the ring class field L

« Lyisadegreen = |CI(R)| extension of K

* We use class field theory to prove a field of definition condition: if
E,, E, both have CM by R then either

(i) [E1]2 = [E2]2 € CI(R) and Q(jJ(E;)) = Q(J(E,)) is a degree n
extension of Q, or
(i) J(Ep) & Q(j(E,)) and Q(j(E)), J(Ey) = Lg
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Field of definition

Other interesting examples

« We can find many cases of an elliptic curve E such that £ can be
defined over a number field L but € (£ X E) cannot

 |f E'is a CM elliptic curve such that the order of
[E'] € CI(End(F)) is greater than 2, then

[C(EX E))> = [E]* # [E]

 This means that j(C(E X E)) & Q(j(E)) = L by our field of
definition condition

+ Itis still true that both j(E) and j(C(E X E)) € L,y the ring
class field
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Field of definition

Isomorphism classes of abelian surfaces

e To determine the “field of definition” of an abelian surface of maximal

Picard rank &/ = E,; X E, we must determine when &f = o/’ for
another abelian surface of maximal Picard rank

 Shioda and Mitani proved that for E; X E, of maximal Picard rank,
we have £, X £, = E; X E, if and only if

() End(E;) N End(E,) = End(£;) N End(E,)
(i) End(E,) + End(E,) = End(E;) + End(E,)
(i) C(E, X E,) = C(Ey; X E))

e Soin particular, if End(£,) = End(E,) = Rthen £, X E, = E; X E,
if and only if both

(1) R = End(E;) = End(£,)
) 6(E, X Ey) = C(E; X Ey), or [E|1[E,] = [E5][E,] € CI(R)



Field of definition

Interesting examples, part 2

« If £ is a CM elliptic curve such that the order of [E] € CI(End(E)) is
greater than 2, then j(C(E X E)) & Q(J(E))

 However, by the Shioda-Mitani condition, £ X E is isomorphic to
various other products E; X E, with

End(E,) = End(E,) = End(E) and [E]* = [E,][E,]
 If [E] € CI(End(E)) has order 4, then
EXE=~=C/End(E)X C(EXE)
* By our field of definition condition,

QU(C(E X E))) = Q((C/End(E)))

« This means £ X E and C(E X E) can both be defined over a field
smaller than the ring class field
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Conclusion

In summary

« ForX= Lk XE, X ... XE, pairwise isogenous CM elliptic curves with
End(E;) = R, then €, (X) is an elliptic curve with CM by

e Form < n we have

which is also a complex abelian variety of maximal Picard number

« We gave examples of some abelian surfaces &/ over a number field L so that

J(C(Ap) & L

» This means though € (&) is algebraic (it is an abelian variety), the construction
of €(& ) is not quite algebraic
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Conclusion

Future work

For X a complex abelian variety of maximal Picard number and
dimension n, ¢ _,(X) is also a complex abelian variety of
maximal Picard number and dimension n

 Does the €, _; action on the set of such X have finite orbits?

* Does the action have fixed points?

Beauville computed ¢(S) up to isogeny for some surfaces of
maximal Picard number that are not abelian surfaces

« Can we compute these ¢ (5) up to isomorphism?

» Are there complex surfaces such that €(S) is a complex torus
but not an abelian variety?
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Conclusion
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