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• In algebraic geometry we study algebraic varieties, which are the set of solutions of 
a system of polynomial equations


• A variety  is equipped with a topology—a collection of subsets termed as open 
subsets—and a structure sheaf  of rings, associating a ring to each open subset 
compatibly with restriction of subsets


• A module over a ring is a set that the ring acts on linearly, like a vector space over a 
field


• We refer to a sheaf of modules over  as a -module


• From the tensor product  of modules, we can define a tensor product  of            
-modules


• The Picard group of  is the group of isomorphism classes of invertible -modules 
or line bundles (operation is , identity element is )

V
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⊗ ⊗
V

V V
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Picard group in algebraic geometry
Motivation
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• The Picard group can be given the structure of an algebraic variety 



• Varieties like  that are also abelian groups are called abelian 
varieties 

• Over , any complex abelian variety is a complex torus  that 
admits an algebraic structure


• If  is a curve over the complex numbers, then the connected 
component of the identity in  is the Jacobian variety 

• In addition to this algebraic definition, we can give an analytic 
construction of the Jacobian variety

Pic(V )

Pic(V )

ℂ ℂd /Γ

C
Pic(C)

Jacobian of a complex curve
Motivation
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• Given a complex curve  we have a short exact sequence of sheaves 
(called the exponential sequence) 





• This gives rise to a long exact sequence of sheaf cohomology groups 





• The cokernel of  is a complex torus  (  is 
a discrete subgroup of )


• This torus gives an analytic construction of the Jacobian variety


• This torus is algebraic, which makes it an abelian variety

C

ℤ ↪ 𝒪C
exp
↠ 𝒪×

C

0 → H0(C, ℤ) → H0(C, 𝒪C) → H0(C, 𝒪×
C) → H1(C, ℤ) → H1(C, 𝒪C) → …

H1(C, ℤ) → H1(C, 𝒪C) ℂg/Γ Γ
ℂg

Analytic construction of the Jacobian
Motivation
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• The Jacobian of a complex curve can be generalized to give an algebraic 
complex torus structure to the cokernel of  for 
higher-dimensional  

• If  is smooth and projective, this construction is a complex torus because 
the image of  in  is discrete  

• Is the cokernel of   also a complex torus for 


• If , 

1. the image of  in  is not necessarily discrete, so the 

cokernel of  is not necessarily a complex torus;

2. even if it is a complex torus, it is not necessarily algebraic

H1(X, ℤ) → H1(X, 𝒪X)
X

X
H1(X, ℤ) H1(X, 𝒪X)

Hm(X, ℤ) → Hm(X, 𝒪X) m > 1?

m > 1
Hm(X, ℤ) Hm(X, 𝒪X)

Hm(X, ℤ) → Hm(X, 𝒪X)

Higher dimensional complex varieties
Motivation
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• If the rank of the group  is maximal, then the cokernel of 
 is a complex torus that we denote 


• The torsion subgroup of  is isomorphic to the Brauer group 
, so we call  the Brauer container 


•  has been studied by Beauville, Shioda & Mitani, among 
others 


• When  is an abelian variety,  has been computed up to 
isogeny (a surjective morphism with finite kernel)


• Furthermore, in this case  is algebraic (an abelian variety)

Pic(X)
H2(X, ℤ) → H2(X, 𝒪X) ℭ(X)

ℭ(X)
Br(X) ℭ(X)

ℭ(X)

X ℭ(X)

ℭ(X)

Degree 2: the Brauer container
Motivation

6



• An elliptic curve is a 1-dimensional abelian variety, which is often 
described as the solution set of an equation 


• We say the elliptic curve has complex multiplication (CM) if it has 
more endomorphisms than just multiplication by 


• (Schoen) A complex abelian variety  of maximal Picard rank is 
(not uniquely) isomorphic to a product of pairwise isogenous CM 
elliptic curves


 


• In the  case, Shioda and Mitani show that  is an 
elliptic curve that is isogenous to both  and 

y2 = x3 + ax + b

ℤ

X

X ≅ E1 × E2 × … × En

n = 2 ℭ(E1 × E2)
E1 E2

Products of elliptic curves
Motivation
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• (Schoen) A complex abelian variety  of maximal Picard rank is (not 
uniquely) isomorphic to a product of pairwise isogenous CM elliptic 
curves


 


• In the  case, Shioda and Mitani show that  is an elliptic 
curve that is isogenous to both  and 


• We will use this concrete description of  to compute  up to 
isomorphism, via number theory


• We will show that for such , the cokernel of  for 
all  is also a complex abelian variety of maximal Picard number

X

X ≅ E1 × E2 × … × En

n = 2 ℭ(E1 × E2)
E1 E2

X ℭ(X)

X Hm(X, ℤ) → Hm(X, 𝒪X)
m ≤ n

Goal
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• Number theory 

• Elliptic curves over  and lattices


• Complex multiplication and the ideal class group


• Computing containers


• Fields of definition


• Issues with extending to fields other than 

ℂ

ℂ

Roadmap
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• A lattice  is the set of -linear 
combinations of some  with :


 


• Any complex elliptic curve  is isomorphic as a 
Lie group to a torus  for a lattice 


• An isomorphism of elliptic curves 
 corresponds to  with 




• Isomorphism is homothety (rotation, scaling) of 
lattices


• An isogeny of elliptic curves corresponds to 
 with 


• Two lattices are isogenous if one is homothetic 
to a sublattice of the other

Γ ⊆ ℂ ℤ
v, w ∈ ℂ v/w ∉ ℝ

Γ = ℤv + ℤw = ⟨v, w⟩
E

ℂ/Γ Γ ⊆ ℂ

E ≅ ℂ/Γ, E′￼≅ ℂ/Γ′￼ α ∈ ℂ
αΓ = Γ′￼

α ∈ ℂ αΓ ⊆ Γ′￼

Number theory
Lattices in the complex numbers
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• The endomorphism ring of a lattice 
is the ring of isogenies to itself


  


• If  is larger than  we say that 
the lattice/elliptic curve has complex 
multiplication (CM) by 


• For  we have 





•  is homothetic to
, 

which is an ideal of 

End(Γ) = {α ∈ ℂ : αΓ ⊆ Γ}

End(Γ) ℤ

End(Γ)
Λ = ⟨3, 2 + −3⟩

End(Λ) = ℤ[3 −3]
Λ
3Λ = ⟨9, 6 + 3 −3⟩ ⊆ ℤ[3 −3]

ℤ[3 −3]

Number theory
Complex multiplication
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• If  has CM, then  is homothetic to an ideal of 



• Think of  as a (fractional) ideal of , and homothety as 
multiplication by an element of —or by a principal ideal


• The ideal class group  is the group of (invertible) fractional ideals 
of  modulo principal ideals (  is the identity element)


• Homothety classes of lattices with CM by  correspond to elements of 



• We use  for the group element corresponding to the 
homothety/isomorphism class of 

E ≅ ℂ/Γ Γ
End(Γ) = End(E)

Γ R = End(Γ)
R

Cl(R)
R R

R
Cl(R)

[E] = [Γ] ∈ Cl(R)
E ≅ ℂ/Γ

CM elliptic curves and the class group
Number theory
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• Number theory


• Computing containers 

• Lattices and the Brauer container


• Self-product example 


• Brauer container of an abelian surface


• Brauer containers of abelian -folds


• The -container of an abelian -fold


• Computing the -container


• Fields of definition


• Issues with extending to fields other than 

E × E

n

n n

m

ℂ

Roadmap
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• Recall: a complex abelian variety  of maximal Picard number is 
isomorphic to a product of pairwise isogenous CM elliptic curves 
(Schoen)





• What does this mean in terms of lattices?


• If  is a CM lattice with , then the endomorphism algebra 
 is an imaginary quadratic number field   

• In fact,  is a subring of the endomorphism algebra 


• Two CM elliptic curves  are isogenous if and only if the 
endomorphism algebras are the same  

X

X ≅ E1 × E2 × … × En

Γ R = End(Γ)
R ⊗ℤ ℚ ℚ( −d)

R K = R ⊗ℤ ℚ

E1, E2

Isogeny of CM lattices
Computing containers
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• Shioda and Mitani found that  is a CM elliptic curve 
isogenous to both 


• To compute  up to isomorphism, we’ll find 
 and an element in  for the 

isomorphism class 


• It’s known that if  and  
span a lattice  then 

ℭ(E1 × E2)
E1, E2

ℭ(E1 × E2)
R = End(ℭ(E1 × E2)) Cl(R)

[ℭ(E1 × E2)]

Ei ≅ ℂ/⟨vi, wi⟩ v1v2, v1w2, w1v2, w1w2 ∈ ℂ
Γ ℭ(E1 × E2) ≅ ℂ/Γ

Lattices and the Brauer container
Computing containers
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• Consider the elliptic curve  
corresponding to the lattice 




•  is isomorphic to an elliptic 
curve 


•  is spanned by 


• 


• 


•

E = ℂ/Λ

Λ = ⟨3, 2 + −3⟩

ℭ(E × E)
E′￼ ≅ ℂ/Λ′￼

Λ′￼

32 = 9

3 ⋅ (2 + −3) = 6 + 3 −3

(2 + −3)2 = 1 + 4 −3

Computing containers
Self-product example
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•  
span the lattice 




• Hence  is isomorphic 
to 


•  are not homothetic, so 



• However, they are isogenous; 
both have endomorphism ring 

{9, 6 + 3 −3, 1 + 4 −3}

Λ′￼ = ⟨3, 1 + −3⟩

ℭ(E × E)
E′￼ = ℂ/Λ′￼

Λ, Λ′￼

E ≇ E′￼ ≅ ℭ(E × E)

ℤ[3 −3]

Computing containers
Self-product example
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• The easiest case to compute the isomorphism class  is 
when 


• In that case,  also has CM by  and

 


• More generally, if , then we can show  has 
CM by  

• Letting  we find that  is a lattice with CM by  
and 


[ℭ(E1 × E2)]
End(E1) = End(E2) = R

ℭ(E1 × E2) R
[ℭ(E1 × E2)] = [E1][E2] ∈ Cl(R)

End(Ei) = Ri ℭ(E1 × E2)
R0 := R1 + R2 ⊆ K = Ri ⊗ℤ ℚ

Ei ≅ ℂ/Γi Γi ⊗Ri
R0 R0

[ℭ(E1 × E2)] = [Γ1 ⊗R1
R0][Γ2 ⊗R2

R0] ∈ Cl(R0)

Brauer container of an abelian surface
Computing containers
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• Recall: a complex abelian variety  of maximal Picard number is isomorphic 
to a product of pairwise isogenous CM elliptic curves (Schoen)


 


• Computing directly with the map  we find that


 


• This means  is a product of CM elliptic curves, hence an abelian variety 

of dimension 


• In fact, the  are also pairwise isogenous, so  is also a 
complex abelian variety of maximal Picard rank!

X

X ≅ E1 × E2 × … × En

H2(X, ℤ) → H2(X, 𝒪X)
ℭ(X) ≅ ∏

i<j

ℭ(Ei × Ej)

ℭ(X)

(n
2)

ℭ(Ei × Ej) ℭ(X)

Brauer containers of abelian n-folds
Computing containers
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• For  an abelian variety of maximal Picard number, 
the cokernel of  is also a complex torus 


• We call this torus  or the m-container 

• The Brauer container  is the 2-container 

• If , then we find similarly that  is an elliptic 
curve with CM by , where  is 

, for 


• We can compute  up to isomorphism as  

, for  such that 

X ≅ E1 × … × En
Hm(X, ℤ) → Hm(X, 𝒪X)

ℭm(X)

ℭ(X)

n = m ℭn(E1 × … × En)
R R

R1 + … + Rn ⊆ K = Ri ⊗ℤ ℚ Ri = End(Ei)

ℭn(X)

[ℭn(X)] =
n

∏
i=1

[Γi ⊗Ri
R] ∈ Cl(R) Γi Ei ≅ ℂ/Γi

The n-container of an abelian n-fold
Computing containers
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• For , we find that the m-container of  is





• Each  is a CM elliptic curve isogenous to the    


•  is a product of pairwise isogenous CM elliptic curves 


• Therefore, for any  which is a complex abelian variety of maximal 
Picard rank, the m-containers  for  are also 
complex abelian varieties of maximal Picard rank! 

• In particular,  is a complex abelian variety of the same 
dimension 

m < n X

ℭm(X) ≅ ∏
i1<i2<…<im

ℭm (Ei1 × … × Eim)
ℭm(Ei1 × … × Eim) Ei

ℭm(X)

X
ℭm(X) m ≤ dim(X)

ℭn−1(X)
n

Computing the m-container
Computing containers

21



• Number theory


• Computing containers


• Fields of definition 

• Issues with extending to fields other than 


• Return to self-product example


•  cannot be defined over the minimal field of definition 
of  


• Elliptic curves and the ring class field


• Give a condition on the fields of definition of two elliptic curves 
with class field theory


• Finding other interesting examples

ℂ

ℭ(E × E)
E

Roadmap
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• Question: is there an analogue of the Brauer container for 
varieties of maximal Picard number over fields other than ?


• For example, if we have an abelian surface  over a number 
field , is there an elliptic curve  over  with some nice 
relationship to the Brauer group of ?


• We would expect that , but sometimes no 
such  over  exists! 

• This means though  is algebraic (it is an abelian variety), 
the construction of  is not-so-algebraic

ℂ

𝒜
L E𝒜 L

𝒜

E𝒜 ⊗ ℂ ≅ ℭ(𝒜ℂ)
E𝒜 L

ℭ(𝒜ℂ)
ℭ(𝒜ℂ)

Issues extending to other fields
Field of definition
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• For a complex elliptic curve  defined by an equation , the 
-invariant is 


 

• A complex elliptic curve is determined up to isomorphism by its -invariant, 
and  is always isomorphic over  to the elliptic curve defined by 


 


•  is the “smallest” number field over which  can be defined


• We will give an example of an abelian surface  over a number field  so 
that 

E y2 = x3 + ax + b
j

j(E) = 1728
4a3

4a3 + 27b2

j
E ℂ

y2 = x3 +
3j(E)

1728 − j(E)
x +

2j(E)
1728 − j(E)

ℚ( j(E)) E

𝒜 L
j(ℭ(𝒜ℂ)) ∉ L

j-invariants of elliptic curves
Field of definition
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Field of definition
Return to self-product example

• Recall the elliptic curve  
corresponding to the lattice 

 


•  is isomorphic to an elliptic curve 
 with  


•  are not homothetic so 


• By computation,  
and 


• Since , we can 
define  over this field 

, but we can’t define 
its Brauer container!

E = ℂ/Λ

Λ = ⟨3, 2 + −3⟩

ℭ(E × E)
E′￼= ℂ/Λ′￼ Λ′￼= ⟨3, 1 + −3⟩

Λ, Λ′￼ E ≇ E′￼

ℚ( j(E)) = ℚ(ζ3
3 2)

ℚ( j(E′￼)) = ℚ(ζ2
3

3 2)

j(ℭ(E × E)) ∉ ℚ( j(E))
E × E

ℚ( j(E)) = ℚ(ζ3
3 2)
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• We will find other examples of an elliptic curve  such that  can be defined 
over a number field  but  cannot, using the class group of 


• Let’s look at  for our previous example  where 



• In this case,  and  


• Note that  is the lattice corresponding to the identity 
element and  are the non-identity elements 


• , which is distinct from both 



• All elements of the class group have different minimal fields of definition 

E E
L ℭ(E × E) End(E)

Cl(End(E)) E = ℂ/Λ
Λ = ⟨3, 2 + −3⟩

End(E) = ℤ[3 −3] Cl(ℤ[3 −3]) ≅ ℤ/3ℤ

ℤ[3 −3] = ⟨1, 3 −3⟩
[E], [E]2 = [ℭ(E × E)] = [E′￼]

ℚ( j(ℂ/⟨1, 3 −3⟩)) = ℚ( 3 2)
ℚ( j(E)), ℚ( j(E′￼))

Self-product example and the class group
Field of definition
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• For two CM elliptic curves , we want to describe when 



• For any elliptic curve  with CM by  the extension 
 is equal to the ring class field 


•  is a degree  extension of  


• We use class field theory to prove a field of definition condition:  if 
 both have CM by  then either


(i)  and  is a degree  
extension of , or


(ii)  and 

E1, E2
j(E2) ∈ ℚ( j(E1))

E R ⊆ R ⊗ℤ ℚ = K
K( j(E)) LR

LR n = |Cl(R) | K

E1, E2 R
[E1]2 = [E2]2 ∈ Cl(R) ℚ( j(E1)) = ℚ( j(E2)) n

ℚ
j(E2) ∉ ℚ( j(E1)) ℚ( j(E1), j(E2)) = LR

Elliptic curves and the ring class field
Field of definition
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• We can find many cases of an elliptic curve  such that  can be 
defined over a number field  but  cannot


• If  is a CM elliptic curve such that the order of 
 is greater than 2, then 





• This means that  by our field of 
definition condition


• It is still true that both  and , the ring 
class field

E E
L ℭ(E × E)

E
[E] ∈ Cl(End(E))

[ℭ(E × E)]2 = [E]4 ≠ [E]2

j(ℭ(E × E)) ∉ ℚ( j(E)) = L

j(E) j(ℭ(E × E)) ∈ LEnd(E)

Other interesting examples
Field of definition
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• To determine the “field of definition” of an abelian surface of maximal 
Picard rank  we must determine when  for 
another abelian surface of maximal Picard rank


• Shioda and Mitani proved that for  of maximal Picard rank, 
we have  if and only if


(i) 

(ii) 

(iii) 


• So in particular, if  then  
if and only if both


(1) 

(2) , or 

𝒜 = E1 × E2 𝒜 ≅ 𝒜′￼

E1 × E2
E1 × E2 ≅ E3 × E4

End(E1) ∩ End(E2) = End(E3) ∩ End(E4)
End(E1) + End(E2) = End(E3) + End(E4)
ℭ(E1 × E2) ≅ ℭ(E3 × E4)

End(E1) = End(E2) = R E1 × E2 ≅ E3 × E4

R = End(E3) = End(E4)
ℭ(E1 × E2) ≅ ℭ(E3 × E4) [E1][E2] = [E3][E4] ∈ Cl(R)

Isomorphism classes of abelian surfaces
Field of definition
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• If  is a CM elliptic curve such that the order of  is 
greater than 2, then  


• However, by the Shioda-Mitani condition,  is isomorphic to 
various other products  with 


 and 


• If  has order 4, then 


 


• By our field of definition condition, 


 


• This means  and  can both be defined over a field 
smaller than the ring class field 

E [E] ∈ Cl(End(E))
j(ℭ(E × E)) ∉ ℚ( j(E))

E × E
E1 × E2

End(E1) = End(E2) = End(E) [E]2 = [E1][E2]

[E] ∈ Cl(End(E))
E × E ≅ ℂ/End(E) × ℭ(E × E)

ℚ( j(ℭ(E × E))) = ℚ( j(ℂ/End(E)))

E × E ℭ(E × E)

Interesting examples, part 2
Field of definition
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• For  pairwise isogenous CM elliptic curves with 
, then  is an elliptic curve with CM by 

 

• For  we have


 


which is also a complex abelian variety of maximal Picard number


• We gave examples of some abelian surfaces  over a number field  so that 



• This means though  is algebraic (it is an abelian variety), the construction 
of  is not quite algebraic

X ≅ E1 × E2 × … × En
End(Ei) = Ri ℭn(X)
R1 + … + Rn ⊆ K = End(Ei) ⊗ℤ ℚ

m < n

ℭm(X) ≅ ∏
i1<i2<…<im

ℭm (Ei1 × … × Eim)

𝒜 L
j(ℭ(𝒜ℂ)) ∉ L

ℭ(𝒜ℂ)
ℭ(𝒜ℂ)

In summary
Conclusion
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• For  a complex abelian variety of maximal Picard number and 
dimension ,  is also a complex abelian variety of 
maximal Picard number and dimension 


• Does the  action on the set of such  have finite orbits?


• Does the action have fixed points?


• Beauville computed  up to isogeny for some surfaces of 
maximal Picard number that are not abelian surfaces


• Can we compute these  up to isomorphism?


• Are there complex surfaces such that  is a complex torus 
but not an abelian variety?

X
n ℭn−1(X)

n

ℭn−1 X

ℭ(S)

ℭ(S)

ℭ(S)

Future work
Conclusion
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