Brauer containers

Sheela Devadas, NSF Postdoctoral Fellow University of Washington

Work by Sheela Devadas and Max Lieblich

Picard group in algebraic geometry

- In algebraic geometry we study **algebraic varieties**, which are the set of solutions of a system of polynomial equations
- A variety V is equipped with a **topology**—a collection of subsets termed as open s ubsets—and a structure sheaf \mathscr{O}_{V} of rings, associating a ring to each open subset compatibly with restriction of subsets *V*
- A **module** over a ring is a set that the ring acts on linearly, like a vector space over a field
- We refer to **a sheaf of modules over** \mathscr{O}_V as a V -module
- From the tensor product \otimes of modules, we can define a tensor product \otimes of -modules *V*
- The Picard group of V is the group of isomorphism classes of invertible V -modules or **line bundles** (operation is \otimes , identity element is \mathscr{O}_V)

Jacobian of a complex curve

- The Picard group can be given the structure of an algebraic variety Pic(*V*)
- Varieties like $Pic(V)$ that are also abelian groups are called **abelian varieties**
- Over C, any complex abelian variety is a **complex torus** \mathbb{C}^d/Γ that admits an algebraic structure
- If C is a curve over the complex numbers, then the connected component of the identity in $\text{Pic}(C)$ is the Jacobian variety
- In addition to this algebraic definition, we can give an analytic construction of the Jacobian variety

Analytic construction of the Jacobian

• Given a complex curve C we have a short exact sequence of sheaves (called the **exponential sequence**)

$$
\mathbb{Z} \hookrightarrow \mathcal{O}_C \stackrel{\exp}{\twoheadrightarrow} \mathcal{O}_C^{\times}
$$

- This gives rise to a long exact sequence of sheaf cohomology groups $0 \to H^0(C, \mathbb{Z}) \to H^0(C, \mathcal{O}_C) \to H^0(C, \mathcal{O}_C^{\times}) \to H^1(C, \mathbb{Z}) \to H^1(C, \mathcal{O}_C) \to \dots$
- The cokernel of $\mathrm{H}^1(C,\mathbb{Z}) \to \mathrm{H}^1(C,\mathscr{O}_C)$ is a **complex torus** \mathbb{C}^g/Γ (Γ is a discrete subgroup of \mathbb{C}^g)
- This torus gives an **analytic construction** of the Jacobian variety
- This torus is algebraic, which makes it an **abelian variety**

Higher dimensional complex varieties

- The Jacobian of a complex curve can be generalized to give an algebraic complex torus structure to the cokernel of $\mathrm{H}^1(X,\mathbb{Z}) \to \mathrm{H}^1(X,\mathscr{O}_X)$ for higher-dimensional *X*
- If X is smooth and projective, this construction is a complex torus because the image of $\mathrm{H}^1(X,\mathbb{Z})$ in $\mathrm{H}^1(X,\mathscr{O}_X)$ is **discrete**
- Is the cokernel of $H^m(X,\mathbb{Z}) \to H^m(X,\mathcal{O}_X)$ also a complex torus for $m > 1$?
- If $m > 1$,
	- 1. the image of $\mathrm{H}^m(X,\mathbb{Z})$ in $\mathrm{H}^m(X,\mathcal{O}_X)$ is not necessarily discrete, so the coker nel of $\mathrm{H}^m(X,\mathbb{Z}) \to \mathrm{H}^m(X,\mathscr{O}_X)$ is $\mathsf{not}\,$ necessarily a complex torus;
	- 2. even if it is a complex torus, it is **not** necessarily algebraic

Degree 2: the Brauer container

- If the rank of the group $Pic(X)$ is **maximal**, then the cokernel of $\mathrm{H}^2(X,\mathbb{Z}) \to \mathrm{H}^2(X,\mathscr{O}_X)$ is a complex torus that we denote $\mathfrak{C}(X)$
- The torsion subgroup of $\mathfrak{C}(X)$ is isomorphic to the Brauer group $\mathrm{Br}(X)$, so we call $\mathfrak{C}(X)$ the **Brauer container**
- $\mathfrak{C}(X)$ has been studied by Beauville, Shioda & Mitani, among others
- When X is an abelian variety, $\mathfrak{C}(X)$ has been computed up to **isogeny** (a surjective morphism with finite kernel)
- Furthermore, in this case $\mathfrak{C}(X)$ is algebraic (an abelian variety)

Products of elliptic curves

- An **elliptic curve** is a 1-dimensional abelian variety, which is often described as the solution set of an equation $y^2 = x^3 + ax + b$
- We say the elliptic curve has **complex multiplication (CM)** if it has more endomorphisms than just multiplication by $\mathbb Z$
- (Schoen) A complex abelian variety X of maximal Picard rank is (not uniquely) isomorphic to a **product of pairwise isogenous CM elliptic curves**

$$
X \cong E_1 \times E_2 \times \ldots \times E_n
$$

• In the $n = 2$ case, Shioda and Mitani show that $\mathfrak{C}(E_1 \times E_2)$ is an elliptic curve that is isogenous to both E_1 and E_2

• (Schoen) A complex abelian variety X of maximal Picard rank is (not uniquely) isomorphic to a **product of pairwise isogenous CM elliptic curves**

$$
X \cong E_1 \times E_2 \times \ldots \times E_n
$$

• In the $n = 2$ case, Shioda and Mitani show that $\mathfrak{C}(E_1 \times E_2)$ is an elliptic curve that is isogenous to both $E^{}_1$ and $E^{}_2$

- We will use this concrete description of X to compute $\mathfrak{C}(X)$ up to **isomorphism**, via number theory
- We will show that for such X, the cokernel of $\mathrm{H}^m(X,\mathbb{Z}) \to \mathrm{H}^m(X,\mathcal{O}_X)$ for **all** $m \leq n$ is also a complex abelian variety of maximal Picard number

Roadmap

- **• Number theory**
	- Elliptic curves over $\mathbb C$ and lattices
	- Complex multiplication and the ideal class group
- Computing containers
- Fields of definition
	- Issues with extending to fields other than $\mathbb C$

Number theory

Lattices in the complex numbers

• A **lattice** $\Gamma \subseteq \mathbb{C}$ is the set of \mathbb{Z} -linear combinations of some $v,w\in\mathbb{C}$ with $v/w\notin\mathbb{R}$:

 $\Gamma = \mathbb{Z}v + \mathbb{Z}w = \langle v, w \rangle$

- Any complex elliptic curve E is isomorphic as a Lie group to a torus \mathbb{C}/Γ for a lattice $\Gamma \subseteq \mathbb{C}$
- An isomorphism of elliptic curves $E\cong \mathbb{C}/\Gamma, E'\cong \mathbb{C}/\Gamma'$ corresponds to $\alpha\in \mathbb{C}$ with $\alpha \Gamma = \Gamma'$
- **Isomorphism** is **homothety** (rotation, scaling) of lattices
- An isogeny of elliptic curves corresponds to $\alpha \in \mathbb{C}$ with $\alpha \Gamma \subseteq \Gamma'$
- Two lattices are **isogenous** if one is **homothetic to a sublattice** of the other

Number theory

Complex multiplication

• The **endomorphism ring** of a lattice is the ring of isogenies to itself

 $\text{End}(\Gamma) = \{ \alpha \in \mathbb{C} : \alpha \Gamma \subseteq \Gamma \}$

• If $\text{End}(\Gamma)$ is larger than $\mathbb Z$ we say that the lattice/elliptic curve has **complex multiplication (CM)** by End(Γ)

• For
$$
\Lambda = (3, 2 + \sqrt{-3})
$$
 we have
End(Λ) = $\mathbb{Z}[3\sqrt{-3}]$

• A is homothetic to $3\Lambda = \langle 9, 6 + 3\sqrt{-3} \rangle \subseteq \mathbb{Z}[3\sqrt{-3}],$ which is an ideal of $\mathbb{Z}[3\sqrt{-3}]$

Number theory

CM elliptic curves and the class group

- If $E \cong \mathbb{C}/\Gamma$ has CM, then Γ is homothetic to an ideal of $\text{End}(\Gamma) = \text{End}(E)$
- Think of Γ as a (fractional) ideal of $R = \text{End}(\Gamma)$, and homothety as multiplication by an element of R – or by a principal ideal
- The **ideal class group** $Cl(R)$ is the group of (invertible) fractional ideals of R modulo principal ideals (R is the identity element)
- Homothety classes of lattices with CM by R correspond to elements of $Cl(R)$
- We use $[E] = [\Gamma] \in \mathrm{Cl}(R)$ for the group element corresponding to the homothety/isomorphism class of $E\cong \mathbb{C}/\Gamma$

Roadmap

- Number theory
- **• Computing containers**
	- Lattices and the Brauer container
	- Self-product example *E* × *E*
	- Brauer container of an abelian surface
	- Brauer containers of abelian *n*-folds
	- The n -container of an abelian n -fold
	- Computing the *m*-container
- Fields of definition
	- Issues with extending to fields other than $\mathbb C$

Isogeny of CM lattices Computing containers

• Recall: a complex abelian variety X of maximal Picard number is isomorphic to a **product of pairwise isogenous CM elliptic curves** (Schoen)

$$
X \cong E_1 \times E_2 \times \ldots \times E_n
$$

- What does this mean in terms of lattices?
- If Γ is a CM lattice with $R = \text{End}(\Gamma)$, then the endomorphism algebra $R\otimes_{\mathbb Z} \mathbb Q$ is an imaginary quadratic number field $\mathbb Q(\sqrt{-d})$
- In fact, R is a subring of the endomorphism algebra $K = R \otimes_{\mathbb{Z}} \mathbb{Q}$
- Two CM elliptic curves E_1, E_2 are isogenous **if and only if** the endomorphism algebras are the same

Lattices and the Brauer container

- Shioda and Mitani found that $\mathfrak{C}(E_1 \times E_2)$ is a CM elliptic curve $\boldsymbol{\mathsf{i}}$ sogenous to both $E_1, \, E_2$
- To compute $\mathfrak{C}(E_1 \times E_2)$ up to **isomorphism**, we'll find $R = \text{End}(\mathfrak{C}(E_1 \times E_2))$ and an element in $\text{Cl}(R)$ for the isomorphism class $[\mathfrak{C}(E_1 \times E_2)]$
- It's known that if $E_i \cong \mathbb{C}/\langle v_i, w_i \rangle$ and $v_1v_2, v_1w_2, w_1v_2, w_1w_2 \in \mathbb{C}$ span a lattice Γ then $\mathfrak{C}(E_1\times E_2)\cong \mathbb{C}/\Gamma$

Computing containers Self-product example

- Consider the elliptic curve $E = \mathbb{C}/\Lambda$ corresponding to the lattice $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$
- $\mathfrak{C}(E\times E)$ is isomorphic to an elliptic $\mathsf{curve}\, E' \cong \mathbb{C}/\Lambda'$
- Λ' is spanned by
	- $3^2 = 9$
	- $3 \cdot (2 + \sqrt{-3}) = 6 + 3\sqrt{-3}$
	- $(2 + \sqrt{-3})^2 = 1 + 4\sqrt{-3}$

Computing containers Self-product example

- $\{9, 6 + 3\sqrt{-3}, 1 + 4\sqrt{-3}\}$ span the lattice $\Lambda'=\langle 3,1+\sqrt{-3}\rangle$
- Hence $\mathfrak{C}(E\times E)$ is isomorphic to $E' = \mathbb{C}/\Lambda'$
- Λ, Λ' are not homothetic, so $E \not\cong E' \cong \mathfrak{C}(E \times E)$
- However, they are isogenous; both have endomorphism ring $Z[3\sqrt{-3}]$

Brauer container of an abelian surface

- The easiest case to compute the isomorphism class $[\mathfrak{C}(E_1\times E_2)]$ is when $\text{End}(E_1) = \text{End}(E_2) = R$
- In that case, $\mathfrak{C}(E_1\times E_2)$ also has CM by R and $[{\mathfrak C}(E_1 \times E_2)] = [E_1][E_2] \in \text{Cl}(R)$
- More generally, if $\text{End}(E_i) = R_i$, then we can show $\mathfrak{C}(E_1 \times E_2)$ has CM by $R_0 := R_1 + R_2 \subseteq K = R_i \otimes_{\mathbb{Z}} \mathbb{Q}$
- Letting $E_i \cong \mathbb{C}/\Gamma_i$ we find that $\Gamma_i \otimes_{R_i} R_0$ is a lattice with CM by R_0 and

 $[\mathfrak{C}(E_1 \times E_2)] = [\Gamma_1 \otimes_{R_1} R_0] [\Gamma_2 \otimes_{R_2} R_0] \in \text{Cl}(R_0)$

Brauer containers of abelian *n***-folds**

• Recall: a complex abelian variety X of maximal Picard number is isomorphic to a **product of pairwise isogenous CM elliptic curves** (Schoen)

$$
X \cong E_1 \times E_2 \times \ldots \times E_n
$$

• Computing directly with the map $\mathrm{H}^2(X,\mathbb{Z}) \to \mathrm{H}^2(X,\mathscr{O}_X)$ we find that

$$
\mathfrak{C}(X) \cong \prod_{i < j} \mathfrak{C}(E_i \times E_j)
$$

- This means $\mathfrak{C}(X)$ is a product of CM elliptic curves, hence an abelian variety of dimension $\overline{ }$ *n* 2)
- In fact, the $\mathfrak{C}(E_i\times E_j)$ are also pairwise isogenous, so $\mathfrak{C}(X)$ is also a **complex abelian variety of maximal Picard rank!**

The *n***-container of an abelian** *n***-fold**

- For $X \cong E_1 \times ... \times E_n$ an abelian variety of maximal Picard number, $\mathsf{the} \text{ cokernel of } \mathrm{H}^m(X,\mathbb{Z}) \rightarrow \mathrm{H}^m(X,\mathscr{O}_X)$ is also a complex torus
- We call this torus $\mathfrak{C}_m(X)$ or the *m*-container
	- The Brauer container $\mathfrak{C}(X)$ is the 2-container
- If $n = m$, then we find similarly that $\mathfrak{C}_n(E_1 \times \ldots \times E_n)$ is an elliptic curve with CM by R , where R is

$$
R_1 + \ldots + R_n \subseteq K = R_i \otimes_{\mathbb{Z}} \mathbb{Q}
$$
, for $R_i = \text{End}(E_i)$

• We can compute $\mathfrak{C}_n(X)$ up to isomorphism as

$$
[\mathfrak{C}_n(X)] = \prod_{i=1}^n [\Gamma_i \otimes_{R_i} R] \in \text{Cl}(R), \text{ for } \Gamma_i \text{ such that } E_i \cong \mathbb{C}/\Gamma_i
$$

Computing the *m***-container**

• For $m < n$, we find that the *m*-container of X is

$$
\mathfrak{C}_m(X) \cong \prod_{i_1 < i_2 < \ldots < i_m} \mathfrak{C}_m\left(E_{i_1} \times \ldots \times E_{i_m}\right)
$$

- Each $\mathfrak{C}_m(E_{i_1}\times\ldots\times E_{i_m})$ is a **CM** elliptic curve isogenous to the E_i
- $\mathfrak{C}_m(X)$ is a product of pairwise isogenous CM elliptic curves
- Therefore, for any X which is a complex abelian variety of maximal Picard rank, the *m*-containers $\mathfrak{C}_m(X)$ for $m \leq \dim(X)$ are also **complex abelian varieties of maximal Picard rank!**
- In particular, $\mathfrak{C}_{n-1}(X)$ is a complex abelian variety of the same dimension *n*

Roadmap

- Number theory
- Computing containers
- **• Fields of definition**
	- Issues with extending to fields other than $\mathbb C$
	- Return to self-product example
		- $\mathfrak{C}(E\times E)$ cannot be defined over the minimal field of definition of \overline{E}
	- Elliptic curves and the ring class field
		- Give a condition on the fields of definition of two elliptic curves with class field theory
	- Finding other interesting examples

Issues extending to other fields

- Question: is there an analogue of the Brauer container for varieties of maximal Picard number over fields other than C?
- For example, if we have an abelian surface $\mathscr A$ over a number field L , is there **an elliptic curve** $E_\mathscr{A}$ **over** L with some nice relationship to the Brauer group of \mathscr{A} ?
- We would expect that $E_{\mathscr{A}}\otimes \mathbb{C}\cong \mathfrak{C}(\mathscr{A}_{\mathbb{C}})$, but sometimes **no** $\boldsymbol{E}_{\mathscr{A}}$ over L exists!
- This means though $\mathfrak{C}(\mathscr{A}_{\mathbb C})$ is algebraic (it is an abelian variety), the construction of $\mathfrak{C}(\mathscr{A}_{\mathbb C})$ is **not-so-algebraic**

j-invariants of elliptic curves

• For a complex elliptic curve E defined by an equation $y^2 = x^3 + ax + b$, the -**invariant** is *j*

$$
j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}
$$

• A complex elliptic curve is determined up to isomorphism by its j -invariant, and E is always isomorphic over $\mathbb C$ to the elliptic curve defined by

$$
y^{2} = x^{3} + \frac{3j(E)}{1728 - j(E)}x + \frac{2j(E)}{1728 - j(E)}
$$

- $\mathbb{Q}(j(E))$ is the "smallest" number field over which E can be defined
- We will give an example of an abelian surface $\mathscr A$ over a number field L so that $j(\mathfrak{C}(\mathscr{A}_{\mathbb{C}})) \notin L$

Return to self-product example

- Recall the elliptic curve $E=\mathbb{C}/\Lambda$ corresponding to the lattice $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$
- **is isomorphic to an elliptic curve** $E' = \mathbb{C}/\Lambda'$ with $\Lambda' = \langle 3, 1 + \sqrt{-3} \rangle$
- Λ , Λ' are **not homothetic** so $E \not\cong E'$
- By computation, $\mathbb{Q}(j(E)) = \mathbb{Q}(\zeta_3 \sqrt[3]{2})$ and $\mathbb{Q}(j(E')) = \mathbb{Q}(\zeta_3^2)$ $\sqrt[3]{2}$
- Since $j(\mathfrak{C}(E\times E))\notin \mathbb{Q}(j(E))$, we can define $E \times E$ over this field $\mathbb{Q}(j(E)) = \mathbb{Q}(\zeta_3 \sqrt[3]{2})$, but we **can't define its Brauer container!**

Self-product example and the class group

- We will find other examples of an elliptic curve E such that E can be defined over a number field L but $\mathfrak{C}(E\times E)$ cannot, using the class group of $\mathrm{End}(E)$
- Let's look at $\text{Cl}(\underline{\text{End}}(E))$ for our previous example $E = \mathbb{C}/\Lambda$ where $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$
- In this case, $\rm{End}(\it{E}) = \mathbb{Z}[3\sqrt{-3}]$ and $\rm{Cl}(\mathbb{Z}[3\sqrt{-3}]) \cong \mathbb{Z}/3\mathbb{Z}$
- Note that $\mathbb{Z}[3\sqrt{-3}] = \langle 1, 3\sqrt{-3} \rangle$ is the lattice corresponding to the identity element and $[E], [E]^2 = [\mathfrak{C}(E \times E)] = [E']$ are the non-identity elements
- $\mathbb{Q}(j(\mathbb{C}/\langle 1, 3\sqrt{-3}\rangle)) = \mathbb{Q}(\sqrt[3]{2})$, which is distinct from both $\mathbb{Q}(j(E)), \mathbb{Q}(j(E'))$
- All elements of the class group have **different minimal fields of definition**

Elliptic curves and the ring class field

- For two CM elliptic curves E_1, E_2 , we want to describe when $j(E_2) \in \mathbb{Q}(j(E_1))$
- For any elliptic curve E with CM by $R \subseteq R \otimes_{\mathbb{Z}} \mathbb{Q} = K$ the extension $K(j(E))$ is equal to the **ring class field** L_R
- L_R is a degree $n = |C|(R)|$ extension of K
- We use class field theory to prove a **field of definition condition**: if $E_1, \, E_2$ both have CM by R then either (i) $[E_1]^2 = [E_2]^2 \in \mathrm{Cl}(R)$ and $\mathbb{Q}(j(E_1)) = \mathbb{Q}(j(E_2))$ is a degree n extension of $\mathbb Q,$ or

(ii) $j(E_2) \notin \mathbb{Q}(j(E_1))$ and $\mathbb{Q}(j(E_1), j(E_2)) = L_R$

Other interesting examples

- We can find many cases of an elliptic curve E such that E can be defined over a number field L but $\mathfrak{C}(E\times E)$ cannot
- If E is a CM elliptic curve such that the order of $[E] \in \mathrm{Cl}(\mathrm{End}(E))$ is greater than 2, then

 $[\mathfrak{C}(E \times E)]^2 = [E]^4 \neq [E]^2$

- This means that $j(\mathfrak{C}(E \times E)) \notin \mathbb{Q}(j(E)) = L$ by our field of definition condition
- It is still true that both $j(E)$ and $j(\mathfrak{C}(E\times E))\in L_{\mathrm{End}(E)},$ the ring class field

Isomorphism classes of abelian surfaces

- To determine the "field of definition" of an abelian surface of maximal Picard rank $\mathscr{A} = E_1 \times E_2$ we must determine when $\mathscr{A} \cong \mathscr{A}'$ for another abelian surface of maximal Picard rank
- Shioda and Mitani proved that for $E_1 \times E_2$ of maximal Picard rank, we have $E_1 \times E_2 \cong E_3 \times E_4$ if and only if (i) $\text{End}(E_1) \cap \text{End}(E_2) = \text{End}(E_3) \cap \text{End}(E_4)$ (ii) $\text{End}(E_1) + \text{End}(E_2) = \text{End}(E_3) + \text{End}(E_4)$ (iii) $\mathfrak{C}(E_1\times E_2)\cong \mathfrak{C}(E_3\times E_4)$
- So in particular, if $\text{End}(E_1) = \text{End}(E_2) = R$ then $E_1 \times E_2 \cong E_3 \times E_4$ if and only if both

(1) $R = \text{End}(E_3) = \text{End}(E_4)$ $(2) \mathfrak{C}(E_1 \times E_2) \cong \mathfrak{C}(E_3 \times E_4)$, or $[E_1][E_2] = [E_3][E_4] \in \text{Cl}(R)$

Interesting examples, part 2

- If E is a CM elliptic curve such that the order of $[E] \in \mathrm{Cl}(\mathrm{End}(E))$ is $\mathsf{greater}$ than 2, then $j(\mathfrak{C}(E\times E))\notin \mathbb{Q}(j(E))$
- However, by the **Shioda-Mitani condition**, $E \times E$ is isomorphic to various other products $E_1 \times E_2$ with

 $\text{End}(E_1) = \text{End}(E_2) = \text{End}(E)$ and $[E]^2 = [E_1][E_2]$

• If $[E] \in \mathrm{Cl}(\mathrm{End}(E))$ has order 4, then

 $E \times E \cong \mathbb{C}/\text{End}(E) \times \mathbb{C}(E \times E)$

• By our field of definition condition,

 $\mathbb{Q}(j(\mathfrak{C}(E \times E))) = \mathbb{Q}(j(\mathbb{C}/End(E)))$

• This means $E \times E$ and $\mathfrak{C}(E \times E)$ can both be defined over a field smaller than the ring class field

Conclusion

In summary

- For $X \cong E_1 \times E_2 \times ... \times E_n$ pairwise isogenous CM elliptic curves with $\operatorname{End}(E_i) = R_i$, then $\mathfrak{C}_n(X)$ is an elliptic curve with CM by $R_1 + \ldots + R_n \subseteq K = \text{End}(E_i) \otimes_{\mathbb{Z}} \mathbb{Q}$
- For $m < n$ we have

$$
\mathfrak{C}_m(X) \cong \prod_{i_1 < i_2 < \ldots < i_m} \mathfrak{C}_m\left(E_{i_1} \times \ldots \times E_{i_m}\right)
$$

which is also a complex abelian variety of maximal Picard number

- We gave examples of some abelian surfaces ${\mathscr A}$ over a number field L so that $j(\mathfrak{C}(\mathcal{A}_{\cap})) \notin L$
- This means though $\mathfrak{C}(\mathscr{A}_{\mathbb C})$ is algebraic (it is an abelian variety), the construction of $\mathfrak{C}(\mathscr{A}_{\mathbb C})$ is **not quite algebraic**

Conclusion

Future work

- For X a complex abelian variety of maximal Picard number and dimension n , $\mathfrak{C}_{n-1}(X)$ is also a complex abelian variety of maximal Picard number and dimension *n*
	- Does the \mathfrak{C}_{n-1} action on the set of such X have finite orbits?
	- Does the action have fixed points?
- Beauville computed $\mathfrak{C}(S)$ up to isogeny for some surfaces of maximal Picard number that are not abelian surfaces
	- Can we compute these $\mathfrak{C}(S)$ up to isomorphism?
	- Are there complex surfaces such that $\mathfrak{C}(S)$ is a complex torus but not an abelian variety?

Conclusion

Thanks and acknowledgments

- This talk is based on joint work with my NSF postdoc mentor Max Lieblich
- I would also like to thank Lalita Devadas for useful conversations about lattices
- This talk is based on work supported by the National Science Foundation under Award No. 2102960

Selected bibliography Conclusion

Arnaud Beauville. "Some surfaces with maximal Picard number". In: Journal de l' ́Ecole polytechnique—Mathématiques 1 (2014), pp. 101–116.

Christina Birkenhake and Herbert Lange. Complex abelian varieties. Vol. 6. Springer, 2004.

David A Cox. Primes of the form $x^2 + ny^2$: Fermat, class field theory, and complex multiplication. Vol. 34. John Wiley & Sons, 2011.

Chad Schoen. "Produkte Abelscher Varietäten und Moduln über Ordnungen." In: (1992).

Joseph H Silverman. The arithmetic of elliptic curves. Vol. 106. Springer, 2009.

Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves. Vol. 151. Springer Science & Business Media, 1994.

Tetsuji Shioda and Naoki Mitani. "Singular abelian surfaces and binary quadratic forms". In: Classification of algebraic varieties and compact complex manifolds. Springer, 1974, pp. 259– 287.