Ceresa cycles, covers of curves, and unlikely intersections

Tejasi Bhatnagar, Sheela Devadas, Toren D'Nelly-Warady, Padma Srinivasan

AWM Research Symposium: Topics in Algebraic Geometry May 2025

Outline

Algebraic cycles and torsion loci in moduli spaces

2 Testing independence of points on an elliptic curve

From 1-cycles on Jacobians to 0-cycles on curves

Algebraic cycles on abelian varieties

X/k: a smooth projective geometrically integral curve over k

J: Jacobian of X

 $Z_1(J)$: Free abelian group on dimension 1 subvarieties of J

 $\mathsf{Z}_1(J)$ is a very large group!

Notions of equivalence: rational or algebraic or homological.

Filtration (*) by cycles trivial under each:

$$\mathsf{Z}_{1,\mathrm{rat}}(J) \subset \mathsf{Z}_{1,\mathrm{alg}}(J) \subset \mathsf{Z}_{1,\mathrm{hom}}(J) \subset \mathsf{Z}_{1}(J)$$

$$C = \mathbb{P}^{1} \quad \langle Z_{b} - Z_{b'} \rangle$$

The Ceresa cycle of a curve

The image of the Abel-Jacobi map

$$i_b: X \to J$$

 $x \mapsto [x-b]$

is a cycle $[X] \in Z_1(J)$.

Definition

The Ceresa cycle Cer(X, b) in $Z_1(J)$ is the canonical cycle

$$Cer(X, b) := [X] - [-1]^*[X].$$

Since $[-1]^*$ is trivial on homology, $Cer(X, b) \in Z_{1,hom}(J)$.

Question: How deep in the filtration (*) does Cer(X, b) lie?

Where is the Ceresa cycle rationally trivial?

Hyperelliptic curves have trivial Ceresa cycle.

Theorem (Ceresa '83)

Let $g \geqslant 3$. Then a very general X/\mathbb{C} of genus g has infinite order Ceresa cycle.

Strengthened by Hain, Zhang & Gao, Kerr & Tayou in 2024.

Upshot: For $g \ge 3$, the Ceresa–torsion locus in \mathcal{M}_g is a (non-explicit!) countable union of closed subvarieties.

Question: Where does Y_t intersect the Ceresa-torsion locus?

Easier Q: Where does a section P_t of an elliptic fibration E_t become torsion?

Outline

1 Algebraic cycles and torsion loci in moduli spaces

2 Testing independence of points on an elliptic curve

From 1-cycles on Jacobians to 0-cycles on curves

The Jacobian as an abstract group

For C a genus g curve over a field k, the Jacobian of C is a g-dimensional abelian variety also defined over k.

Elements of the abstract group Jac(C) are degree 0 divisors

$$\sum_{P \in C} n_P P \text{ with } \sum_{P \in C} n_P = 0$$

modulo rational equivalence:

$$P_1 + P_2 + P_3 = Q_1 + Q_2 + Q_3.$$

When g = 1, the Jacobian of C is an elliptic curve.

Canonical height: A tool for testing if a point is torsion

Elements of the Jacobian are points of a variety: they have coordinates!

For E/\mathbb{Q} , we get a canonical height $\hat{h}: E(\overline{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$ such that

$$\hat{h}(P) = 0 \iff P \text{ torsion}.$$

$$E: y^2 = x^3 + 2x + 3$$

$$P = (-1,0)$$
 has height 0 and order 2.

Q=(3,-6) has height ≈ 1.45 and infinite order.

Testing independence of points on *E* using heights

For E/\mathbb{Q} , and points $P_1, \ldots, P_n \in E(\overline{\mathbb{Q}})$ we can test their independence with the height pairing matrix

$$\begin{pmatrix} \langle P_1, P_1 \rangle & \dots & \langle P_n, P_1 \rangle \\ & \dots & \\ \langle P_1, P_n \rangle & \dots & \langle P_n, P_n \rangle \end{pmatrix}$$

for the bilinear height pairing

$$\langle P, Q \rangle = \hat{h}(P+Q) - \hat{h}(P) - \hat{h}(Q).$$

Key: The determinant of the matrix is nonzero if and only if the points are linearly independent.

Height pairing matrix example

Consider the elliptic curve

$$E: x^3 - 3xy + y^2 + 9y + 8 = 0.$$

and the points

$$P_1 = (0, -1) - (\omega - \omega^2, -1) + (-2, 0) - (-2\omega, 0)$$

$$P_2 = (0, -1) - (\omega^2 - \omega, -1) + (-2, 0) - (-2\omega^2, 0).$$

MAGMA: det of the height pairing matrix for P_1, P_2 is \sim 47.72 $\implies P_1, P_2$ are linearly independent!

Outline

1 Algebraic cycles and torsion loci in moduli spaces

2 Testing independence of points on an elliptic curve

3 From 1-cycles on Jacobians to 0-cycles on curves

Ceresa cycles and elliptic curves

Theorem (Laga-Shnidman '23)

The Ceresa cycle of the curve X_t : $y^3 = x^4 + 2tx^2 + 1$ is torsion if and only if the point $(\sqrt[3]{t^2 - 1}, t)$ on the elliptic curve $y^2 = x^3 + 1$ is torsion.

Proof technique: Chow motives

This means $Cer(X_t)$ is torsion for ∞ values of $t \in \mathbb{C}$ (but a Northcott property holds).

Question: Can we find a family of curves Y_t such that the Ceresa cycle is torsion for finitely many $t \in \mathbb{C}$, using classical techniques?

Main Theorem 1: Covers of curves and Ceresa cycles A family of genus 4 curves with many maps to elliptic curves

Let $Y_t \to C_t$ a double cover branched above (1, -1), (-t, 0) for $C_t : y^3 + z^3 + y^2z^2 + (t^3 + 1)yz + t^3 = 0.$

Theorem 1 (Bhatnagar–Devadas–D'Nelly-Warady–Srinivasan) The Ceresa cycle $Cer(Y_t)$ is torsion for finitely many $t \in \mathbb{C}$.

Key: The family C_t has automorphism group S_3 with involutions

$$\sigma_i: (y, z) \mapsto (\omega^i z, \omega^{-i} y)$$
 for $i = 1, 2, 3$.

The quotients C_t/σ_i are isomorphic to the elliptic curve

$$E_t: x^3 - 3xy + y^2 + (t^3 + 1)y + t^3 = 0.$$

Theorem 2 (Bhatnagar–Devadas–D'Nelly-Warady–Srinivasan)

Let G be a finite group. Let \mathcal{M}_G denote the space of genus g curves Y admitting automorphisms by G.

If $g(Y/G) \ge 2$ and $Y \to Y/G$ is ramified at at least one point, then the very general curve in \mathcal{M}_G has infinite order Ceresa cycle.

Our dimension reduction technique for both theorems: Intersection theory of algebraic cycles using covers $Y \rightarrow C$.

Dimension reduction: Shadows of the Ceresa cycle

Definition (Ellenberg-Logan-Srinivasan '24)

Let $\phi: C \to C'$ be a separable degree d cover of curves with ramification divisor R_{ϕ} . The relative canonical shadow in $Pic^0(C)$ is

$$D_{\phi} := d(2g_{C'} - 2)R_{\phi} - \deg(R_{\phi})\phi^*(K_{C'}) + 2(dR_{\phi} - \phi^*\phi_*R_{\phi})).$$

When ϕ is Galois, $2(dR_{\phi} - \phi^*\phi_*R_{\phi})) = 0$ (since $\phi^*\phi_* = [d]$).

When C' is an elliptic curve, $d(2g_{C'}-2)R_{\phi}-\deg(R_{\phi})\phi^*(K_{C'})=0$ so $D_{\phi}=2(dR_{\phi}-\phi^*\phi_*R_{\phi}).$

Theorem (E-L-S '24)

If D_{ϕ} is infinite order, then the Ceresa cycle of C has infinite order.

Proof of Theorem 1: $Cer(Y_t)$ is torsion for finitely many t

Goal: Show $\pi_*(D_\phi)$ (hence D_ϕ) has infinite order.

 $\psi_*\pi_*(D_\phi)=0$, but C_t admits other maps to $E_t!$

Thm 1 Proof cont'd: $Cer(Y_t)$ is torsion for finitely many t

We get three shadows! One for each of the maps $\psi_i \circ \pi \colon Y_t \to E_t$.

Push–forward along $\psi_3 \circ \pi$ gives sections P_i of E_t :

$$\psi_{3,*}\pi_*(D_{\psi_i\circ\pi})=4P_i$$
 for
$$P_i=\psi_3(A_1)-\psi_3(\sigma_i(A_1))+\psi_3(B_1)-\psi_3(\sigma_i(B_1)).$$

Thm 1 Proof: Reduction to an unlikely intersections result

By our earlier height pairing matrix computation, $P_1(2), P_2(2)$ are linearly independent points of $E_2 \Longrightarrow P_1(t), P_2(t)$ are linearly independent sections of $E_t!$

Masser–Zannier unlikely intersections theorem \implies $P_1(t), P_2(t)$ are simultaneously torsion for finitely many $t \in \mathbb{C}$.

Ceresa cycles of ramified covers of curves of genus ≥ 2

Theorem 2

Let G be a finite group. Let \mathcal{M}_G denote the space of genus g curves Y admitting automorphisms by G.

If $g(Y/G) \ge 2$ and $Y \to Y/G$ is ramified at at least one point, then the very general curve in \mathcal{M}_G has infinite order Ceresa cycle.

Proof: $\pi: Y \to Y/G$ is Galois, so we may compute the shadow:

$$\pi_*(D_\pi) = (\#G) \left((2g_{Y/G} - 2)\pi_*(R_\pi) - (\deg R_\pi)K_{Y/G} \right).$$

Manin–Mumford theorem \implies For a very general choice of branch points, $\pi_*(D_\pi)$ (hence Cer(Y)) has infinite order.

Thanks

- The special session organizers, Julie Rana and Ursula Whitcher
- The WIAG collaborative workshop at the IAS
- The AWM, AMS, and NSF (DMS 2113506) travel funding