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Algebraic cycles on abelian varieties

X {k : a smooth projective geometrically integral curve over k
J : Jacobian of X

Z1pJq : Free abelian group on dimension 1 subvarieties of J

Z1pJq is a very large group!

Notions of equivalence: rational or
algebraic or homological.

Filtration (*) by cycles trivial under
each:
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The Ceresa cycle of a curve

The image of the Abel-Jacobi map

ib : X Ñ J

x ÞÑ rx ´ bs

is a cycle rX s P Z1pJq.

J
X

r´1s˚X

Definition
The Ceresa cycle CerpX , bq in Z1pJq is the canonical cycle

CerpX , bq :“ rX s ´ r´1s˚rX s.

Since r´1s˚ is trivial on homology, CerpX , bq P Z1,hompJq.

Question: How deep in the filtration p˚q does CerpX , bq lie?



Where is the Ceresa cycle rationally trivial?

Hyperelliptic curves have trivial Ceresa cycle.

Theorem (Ceresa ’83)
Let g ě 3. Then a very general X {C of genus g has infinite order
Ceresa cycle.

Strengthened by Hain, Zhang & Gao, Kerr & Tayou in 2024.

Upshot: For g ě 3, the Ceresa–torsion locus in Mg is a
(non-explicit!) countable union of closed subvarieties.

Question: Where does Yt intersect the Ceresa–torsion locus?

Easier Q: Where does a section Pt of an elliptic fibration Et

become torsion?
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The Jacobian as an abstract group

For C a genus g curve over a field k , the Jacobian of C is a
g -dimensional abelian variety also defined over k .

Elements of the abstract group JacpC q are degree 0 divisors

ÿ

PPC

nPP with
ÿ

PPC

nP “ 0

modulo rational equivalence:

P1`P2`P3 “ Q1`Q2`Q3.
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When g “ 1, the Jacobian of C is an elliptic curve.



Canonical height: A tool for testing if a point is torsion

Elements of the Jacobian are points of a variety:
they have coordinates!

For E{Q, we get a canonical height ĥ : E pQq Ñ Rě0 such that

ĥpPq “ 0 ðñ P torsion.

P

Q

E : y2 “ x3 ` 2x ` 3

P “ p´1, 0q has height 0 and order 2.

Q “ p3,´6q has height « 1.45 and
infinite order.



Testing independence of points on E using heights

For E{Q, and points P1, . . . ,Pn P E pQq we can test their
independence with the height pairing matrix

¨

˝

xP1,P1y . . . xPn,P1y

. . .
xP1,Pny . . . xPn,Pny

˛

‚

for the bilinear height pairing

xP,Qy “ ĥpP ` Qq ´ ĥpPq ´ ĥpQq.

Key: The determinant of the matrix is nonzero if and only if the
points are linearly independent.



Height pairing matrix example

Consider the elliptic curve

E : x3 ´ 3xy ` y2 ` 9y ` 8 “ 0.

and the points

P1 “ p0,´1q ´ pω ´ ω2,´1q ` p´2, 0q ´ p´2ω, 0q

P2 “ p0,´1q ´ pω2 ´ ω,´1q ` p´2, 0q ´ p´2ω2, 0q.

MAGMA: det of the height pairing matrix for P1,P2 is „47.72
ùñ P1,P2 are linearly independent!
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Ceresa cycles and elliptic curves

Theorem (Laga–Shnidman ’23)

The Ceresa cycle of the curve Xt : y
3 “ x4 ` 2tx2 ` 1 is torsion if

and only if the point p
3
?
t2 ´ 1, tq on the elliptic curve y2 “ x3 ` 1

is torsion.

Proof technique: Chow motives

This means CerpXtq is torsion for 8 values of t P C
(but a Northcott property holds).

Question: Can we find a family of curves Yt such that the Ceresa
cycle is torsion for finitely many t P C, using classical techniques?



Main Theorem 1: Covers of curves and Ceresa cycles
A family of genus 4 curves with many maps to elliptic curves

Let Yt Ñ Ct a double cover branched above p1,´1q, p´t, 0q for

Ct : y
3 ` z3 ` y2z2 ` pt3 ` 1qyz ` t3 “ 0.

Theorem 1 (Bhatnagar–Devadas–D’Nelly-Warady–Srinivasan)
The Ceresa cycle CerpYtq is torsion for finitely many t P C.

Key: The family Ct has automorphism group S3 with involutions

σi : py , zq ÞÑ pωiz , ω´iyq for i “ 1, 2, 3.

The quotients Ct{σi are isomorphic to the elliptic curve

Et : x
3 ´ 3xy ` y2 ` pt3 ` 1qy ` t3 “ 0.



Main Theorem 2: Covers of curves and Ceresa cycles
Ramified covers of curves of genus ě 2

Theorem 2 (Bhatnagar–Devadas–D’Nelly-Warady–Srinivasan)

Let G be a finite group. Let MG denote the space of genus g
curves Y admitting automorphisms by G .

If gpY {G q ě 2 and Y Ñ Y {G is ramified at at least one point,
then the very general curve in MG has infinite order Ceresa cycle.

Our dimension reduction technique for both theorems:
Intersection theory of algebraic cycles using covers Y Ñ C .



Dimension reduction: Shadows of the Ceresa cycle

Definition (Ellenberg–Logan–Srinivasan ’24)
Let ϕ : C Ñ C 1 be a separable degree d cover of curves with
ramification divisor Rϕ. The relative canonical shadow in Pic0pC q is

Dϕ :“ dp2gC 1 ´ 2qRϕ ´ degpRϕqϕ˚pKC 1q ` 2pdRϕ ´ ϕ˚ϕ˚Rϕqq.

When ϕ is Galois, 2pdRϕ ´ ϕ˚ϕ˚Rϕqq “ 0 (since ϕ˚ϕ˚ “ rds).

When C 1 is an elliptic curve, dp2gC 1 ´ 2qRϕ ´ degpRϕqϕ˚pKC 1q “ 0
so Dϕ “ 2pdRϕ ´ ϕ˚ϕ˚Rϕq.

Theorem (E–L–S ’24)
If Dϕ is infinite order, then the Ceresa cycle of C has infinite order.



Proof of Theorem 1: CerpYtq is torsion for finitely many t

g “ 4 Yt

g “ 3 Ct

g “ 1 Et

π

ψ

ϕ
A1 B1

A2 B2

π is branched above A1,B1.

ϕ “ ψ ˝ π : Yt Ñ Et is not Galois.

π˚pDϕq “ 4pA1 ´ A2 ` B1 ´ B2q

Goal: Show π˚pDϕq (hence Dϕ) has infinite order.

ψ˚π˚pDϕq “ 0, but Ct admits other maps to Et !



Thm 1 Proof cont’d: CerpYtq is torsion for finitely many t

Yt

Ct

Et Et Et

branched at
A1&B1

π

ψ3
ψ2

ψ1

Recall Ct has 3 involutions

σi : py , zq ÞÑ pωiz , ω´iyq

with quotients Ct{σi – Et for

Et : x
3´3xy`y2`pt3`1qy`t3 “ 0.

We get three shadows! One for each of the maps ψi ˝ π : Yt Ñ Et .

Push–forward along ψ3 ˝ π gives sections Pi of Et :

ψ3,˚π˚pDψi˝πq “ 4Pi for

Pi “ ψ3pA1q ´ ψ3pσi pA1qq ` ψ3pB1q ´ ψ3pσi pB1qq.



Thm 1 Proof: Reduction to an unlikely intersections result

Yt

Ct

Et Et Et

branched at
p1,´1q&p´t,0q

π

ψ3
ψ2

ψ1

We have two sections
P1ptq,P2ptq P Et such that

CerpYtq torsion ùñ

Dψi˝π torsion ùñ

Pi ptq torsion for both i “ 1, 2.

By our earlier height pairing matrix computation,
P1p2q,P2p2q are linearly independent points of E2 ùñ

P1ptq,P2ptq are linearly independent sections of Et !

Masser–Zannier unlikely intersections theorem ùñ

P1ptq,P2ptq are simultaneously torsion for finitely many t P C.



Ceresa cycles of ramified covers of curves of genus ě 2

Theorem 2
Let G be a finite group. Let MG denote the space of genus g
curves Y admitting automorphisms by G .

If gpY {G q ě 2 and Y Ñ Y {G is ramified at at least one point,
then the very general curve in MG has infinite order Ceresa cycle.

Proof: π : Y Ñ Y {G is Galois, so we may compute the shadow:

π˚pDπq “ p#G q
`

p2gY {G ´ 2qπ˚pRπq ´ pdegRπqKY {G

˘

.

Manin–Mumford theorem ùñ For a very general choice of branch
points, π˚pDπq (hence CerpY q) has infinite order.
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