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Motivation

Elliptic curves in algebraic geometry

In algebraic geometry we study
algebraic varieties, which are the set
of solutions of a system of polynomial
equations

An elliptic curve is the solution set of
an equation y* = x> + ax + b

In fact elliptic curves are abelian
varieties, since we can “add” points,
giving it the structure of an abelian

group

These important objects of number
theory have applications in
cryptography, integer factorization,
and primality proving
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Motivation

Jacobian of a complex curve

P Q1

 For more general curves we cannot add — C
points as with an elliptic curve Py Q2
* Instead, we can embed the curve Cin a P o}

higher-dimensional abelian variety known Y 1
as the Jacobian variety Jac(C) i o IP)
« Elements of Jac(C) are degree 0 divisors —abstract “combinations of points”

Z npP such that Z np =0

pPeC pPeC

modulo the relation of rational equivalence (P; + P, + P; = QO + O, + O»)

« Geometrically, we can give this abelian group the structure of a variety

 In addition to this algebraic definition, we can give an analytic construction of
the Jacobian variety as a complex torus
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Motivation

Complex abelian varieties and tori

/N

. A complex torus C¢/T" is the quotient
of a complex vector space C by a
- : discrete subgroup or lattice I

 Any complex abelian variety can be

|
0
:
‘ admits an algebraic structure

— realized as a complex torus which
g____Q » Ford = 1 every torus is algebraic, so
C/A is always isomorphic to an elliptic
‘ curve over C

* This is not true in higher dimensions!



Motivation

Analytic construction of the Jacobian

« A variety Vis equipped with a topology—a collection of subsets termed as

open subsets—and a structure sheaf 0, of rings, associating a ring to each
open subset compatibly with restriction of subsets

« Given a complex curve C we have a short exact sequence of sheaves (called
the exponential sequence)

exp

Z< Op > OF

e This gives rise to a long exact sequence of sheaf cohomology groups

0 — H(C, 2) -» H(C, 6,) - H(C, 6%) - H(C,Z) - H'(C,6.) — ...
. The cokernel of H(C, Z) - H!(C, O ) is a complex torus C5/T°

* This torus gives an analytic construction of the Jacobian variety

* This torus is algebraic, which makes it an abelian variety
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Motivation

Higher dimensional complex varieties

The Jacobian of a complex curve can be generalized to give an algebraic
complex torus structure to the cokernel of H'(X, Z) — H'(X, Oy) for
higher-dimensional X

If X is smooth and projective, this construction is a complex torus because
the image of HY(X, Z) in H'(X, Oy) is a discrete subgroup of the complex
vector space H' (X, O)

Is the cokernel of H"(X, Z) - H"(X, Oy) also a complex torus for m > 17

fm > 1,

1. the image of H"(X, Z) in H"(X, Oy) is not necessarily discrete, so the
cokernel of H"(X, Z) — H"(X, Oy) is not necessarily a complex torus;

2. even if it is a complex torus, it is not necessarily algebraic



Motivation

Degree 2: the Brauer-Jacobian

The cokernel €(X) of H*(X, Z) — H*(X, O) is a complex torus

exactly when the kernel has maximal rank—meaning X is “very
algebraic” (has many line bundles)

We say that X which satisfies the above has maximal Picard number

The torsion subgroup of € (X) is isomorphic to the Brauer group Br(X),
so we call €(X) the Brauer-Jacobian

(' (X) has been studied by Beauville ‘14, Shioda & Mitani ‘74, among
others

When X is an abelian variety, €(X) has been computed up to isogeny
(a surjective morphism with finite kernel)

Furthermore, in this case €(X) is algebraic (an abelian variety)
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Motivation

Products of elliptic curves

* Recall: an elliptic curve is a 1-dimensional abelian variety, which
Is often described as the solution set of an equation

yi=x’4+ax+b

* We say the elliptic curve has complex multiplication (CM) if it
has more endomorphisms than just multiplication by Z

Theorem (Schoen). A complex abelian variety X of maximal
Picard rank is (not uniquely) isomorphic to a product of pairwise
isogenous CM elliptic curves

X~E XE X..XE

» Inthe n = 2 case, Shioda and Mitani show that € (£, X E,) is an
elliptic curve that is isogenous to both £, and £,
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Our results

« Theorem (Schoen). A complex abelian variety X of maximal Picard rank is (not
uniquely) isomorphic to a product of pairwise isogenous CM elliptic curves

X~2E/ XE X...XE,

e Inthe n = 2 case, Shioda and Mitani show that C (£, X E,) is an elliptic curve
that is isogenous to both E; and E,

« My work with M. Lieblich uses this concrete description of X to compute ¢(X)
up to isomorphism, via number theory

 We proved that for such X, the cokernel of H"(X, Z) — H"(X, Oy) for all
m < n is also a complex abelian variety of maximal Picard number, which we call
the weight /m Jacobian ¢ (X)

« We also proved conditions on the field of definition for &,(E, X E,) in certain
cases, and we plan to prove similar conditions in the general case
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Roadmap

* Number theory

« Elliptic curves over C and lattices
 Complex multiplication and the ideal class group
 Computing higher-weight Jacobians

 Fields of definition

* Issues with extending to fields other than C

e Conclusions and future work
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Number theory

Lattices in the complex numbers

Any complex elliptic curve E is isomorphic as a Lie
group to a torus C/I" for a discrete subgroup or
lattice ' C C

Any lattice in C can be written as the set of Z-linear
combinations of some v, w € C with v/w & R:

['=2v+2Zw = (v,w)

An isomorphism of elliptic curves
E=C/T',E" = C/I" corresponds to a homothety

(rotation/scaling) of lattices, which is some o € C
withal =T

An isogeny of elliptic curves correspondsto a € C
withal  C I

Two lattices are isogenous if one is homothetic to
a sublattice of the other
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Number theory

Complex multiplication

The endomorphism ring of a lattice
IS the ring of isogenies to itself

EndI)={aeC:al CI'}

If End(I") is larger than Z we say that
the lattice/elliptic curve has complex

multiplication (CM) by End(I")
For A = (3,2 +1/—3) we have
End(A) = Z[3+/—3]

A is homothetic to

3A = (9,6 +3v/=3) C Z[3v/-3],

which is an ideal of Z[3/ —3]
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Number theory

CM elliptic curves and the class group

o If £ = C/I has CM, then I is homothetic to an ideal of
End(I") = End(£F)

« Think of I as a (fractional) ideal of R = End(I"), and homothety
as multiplication by an element of R—or by a principal ideal

« The ideal class group CI(R) is the group of (invertible) fractional
ideals of R modulo principal ideals (R is the identity element)

« Homothety classes of lattices with CM by R correspond to
elements of CI(R)

« Weuse [E] = [I'] € CI(R) for the group element corresponding
to the homothety/isomorphism class of £ = C/I'
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Roadmap

 Number theory
 Computing higher-weight Jacobians

» Lattices and the Brauer-dacobian (2-Jacobian)

« Self-product example £ X E

e 2-Jacobian of an abelian surface

The n-Jdacobian of an abelian n-fold

« Computing the m-Jacobian

e Fields of definition

« Issues with extending to fields other than C

 Conclusions and future work
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Computing higher-weight Jacobians
Isogeny of CM lattices

* Recall: a complex abelian variety X of maximal Picard number is
iIsomorphic to a product of pairwise isogenous CM elliptic
curves (Schoen)

X2E XE,X...XE,
* What does this mean in terms of lattices?

 IfI"is a CM lattice with R = End(I"), then the endomorphism
algebra R @, W) is an imaginary quadratic number field Q(y/ —d)

» In fact, R is a subring of the endomorphism algebra K = R @ , ()

« Two CM elliptic curves E,, £, are isogenous if and only if the
endomorphism algebras are the same
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Computing higher-weight Jacobians
Lattices and the 2-Jacobian

» Shioda and Mitani found that C€(E, X E,) is a CM elliptic curve
isogenous to both E,, £,

» To compute C(E, X E,) up to isomorphism, we’ll find
R = End(C(E, X E,)) and an element in CI(R) for the
isomorphism class [C(E; X E,)]

o It’'s known that if E; = C/(v;, w;) and v{ vy, V{W,, Wiy, Wiw, € C
span a lattice I then C(E, X E,) = C/T
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Computing higher-weight Jacobians
Self-product example

» Consider the elliptic curve £ = C/A
corresponding to the lattice

A=(3,2++/-3)

« C(E X E) is isomorphic to an elliptic
curve E' = C/A’

« A’is spanned by
+ 3°=9

¢+ 3.Q24+v-3)=6+3y/-3
e 2+1/-32=1+4/-3




Computing higher-weight Jacobians

Self-product example

. {9,6+3v/-3,1+4y/-3)

span the lattice

A = (3,14++/-3)

« Hence G(E X E) is isomorphic
to ' = C/A’

« A, A" are not homothetic, so
EFE£2F ~=~CEXE)

 However, they are isogenous;
both have endomorphism ring

Z[3\/ —3]
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Computing higher-weight Jacobians
2-Jacobian of an abelian surface

* The easiest case to compute the isomorphism class

» In that case, C€(E; X E,) also has CM by R and
[C(E; X E,)] = [E|]E,] € CI(R)

» More generally, if End(E;) = R;, then we can show (£, X E,)

» Letting E; = C/1'; wefind that I'; ® R, is a lattice with CM by
R, and

[G(E; X E))] = [['; ® RylIT, ®g, Ryl € CI(Ry)
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Computing higher-weight Jacobians
The n-Jacobian of an abelian n-fold

* Recall: a complex abelian variety X of maximal Picard number is isomorphic to a
product of pairwise isogenous CM elliptic curves (Schoen)

X=2E XE,X...XE,
» Since X has maximal Picard rank, €(X) is a complex torus

e Form > 2, the cokernel of H"(X, Z) - H"(X, Oy) is also a complex torus, the
m-Jacobian ¢, (X)

» If n = m, then we find similarly that €, (£, X ... X E,) is an elliptic curve with CM
by R, where R is

» We can compute ¢, (X) up to isomorphism as

[€,(X)] = [ [ [T ® R € CI(R), for T'; such that E; = C/T,
i=1
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Computing higher-weight Jacobians
Computing the m-Jacobian

e For m < n, we find that the m-Jdacobian of X is
¢ (X) = H O <Ei1 X ... X Eim)

[ <ih<...<i,

- Each €, (E; X ... X E; ) is a CM elliptic curve isogenous to the E,

. (Sm(X) Is a product of pairwise isogenous CM elliptic curves

Theorem (Devadas-Lieblich). If X is a complex abelian variety of

maximal Picard rank, the m-Jacobian ¢ _(X) forany 2 < m < dim(X)
IS also a complex abelian variety of maximal Picard rank.

* In particular, ¢,_,(X) is a complex abelian variety of the same
dimension n
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Roadmap

 Number theory
 Computing higher-weight Jacobians

 Fields of definition

Issues with extending to fields other than C

* Return to self-product example

« C(E X E) cannot be defined over the minimal field of definition of E

Elliptic curves and the ring class field

e Give a condition on the fields of definition of two elliptic curves with
class field theory

Finding other interesting examples

e Conclusions and future work
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Field of definition

Issues extending to other fields

* Question: is there an analogue of higher-weight Jacobians for
varieties of maximal Picard number over fields other than C?

« For example, if we have an abelian surface &/ over a number
field L, is there an elliptic curve E , over L with some nice

relationship to the Brauer group of &f?

 We would expect that £, ® C = (), but sometimes no
such £, over L exists!

» This means though G (&) is algebraic (it is an abelian variety),
the construction of §(&/ ) is not-so-algebraic
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Field of definition

J-invariants of elliptic curves

« For a complex elliptic curve E defined by an equation y2 = x> +ax+ b,
the j-invariant is

4a’

(E) = 1728
JE) 143 + 272

« A complex elliptic curve is determined up to isomorphism by its j-invariant,
and E is always isomorphic over C to the elliptic curve defined by

s 3 3i(E) 2j(E)
y — x I . x + °
1728 — j(E) 1728 — j(E)

« Q(J(E)) is the “smallest” number field over which E can be defined

« We will give an example of an abelian surface & over a number field L so
that j(C( ) € L
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Field of definition

Return to self-product example

Recall the elliptic curve E = C/A
corresponding to the lattice

A =(3,24+4/-3)

C(E X E) is isomorphic to an elliptic curve
E' = C/A" with

A, A" are not homothetic so £ % E’

By computation, Q(j(E)) = @(53\3/5)
and Q((E")) = Q((A/2)

Since J(C(E X E)) & Q(j(E)), we can
define E X E over this field
QU(E)) = @(53\?/5), but we can’t define

its 2-Jacobian!
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Field of definition

Self-product example and the class group

We will find other examples of an elliptic curve E such that E can be defined
over a number field L but €(E X E) cannot, using the class group of End(E)

Let’s look at CI(End(E)) for our previous example £ = C/A where
A={(3,24++-3)

In this case, End(E) = Z[3y/—3]and CI(Z[3\/ —3]) = Z/37Z

Note that Z[34/—3] = (1, 34/ —3) is the lattice corresponding to the identity
element and [E], [E]* = [C(E X E)] = [E'] are the non-identity elements

Q((C/(1, 3\/—73))) = @(\3/5), which is distinct from both
QUE)), QU(E))

All elements of the class group have different minimal fields of definition
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Field of definition

Elliptic curves and the ring class field

 For two CM elliptic curves E,, E,, we want to describe when
J(Ey) € QU(ED)

« For any elliptic curve £ with CM by R C R ® , ) = K the extension
K(j(E£)) is equal to the ring class field L

« Lyisadegree n = |CI(R)| extension of K

 We use class field theory to prove a field of definition condition:

Proposition (Devadas-Lieblich). If £, E, are two elliptic curves with
CM by R then either

(i) [E1]2 = [E2]2 € CI(R) and Q(J(E,)) = Q(j(E,)) is a degree n
extension of Q, or
(i) J(Ep) & Q((E)) and Q(j(E)), J(Ey)) = Ly
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Field of definition

Other interesting examples

« We can find many cases of an elliptic curve E such that £ can be
defined over a number field L but €(E X E) cannot

 |f £ is a CM elliptic curve such that the order of
[E'] € CI(End(F)) is greater than 2, then

[C(EX E))> = [E]* # [E]’

» This means that j(C(E X E)) &€ Q(j(E)) = L by our field of
definition condition

+ Itis still true that both j(E) and j(C(E X E)) € Ly, the ring
class field

28



Field of definition

Isomorphism classes of abelian surfaces

 To determine the “field of definition” of an abelian surface of
maximal Picard rank & = E| X E, we must determine when

g =~ o' for another abelian surface of maximal Picard rank
Theorem (Shioda-Mitani). If £, ..., E, are pairwise isogenous
CM elliptic curves, then £ X E, = E; X E, if and only if
() End(E,) Nn End(E,) = End(E;) N End(E,)

(i) End(E,) + End(E,) = End(E;) + End(£,)
(i) C(E, X E,) = C(E; X Ey)

» So in particular, if End(E,) = End(E,) = R then
E, X E, = E; X E, if and only if both
@) C(E, X E,) = C(E; X E4)2,90r lELE,] = [E5][E,] € CI(R)



Field of definition

Interesting examples, part 2

o If E is a CM elliptic curve such that the order of [E] € CI(End(E)) is greater than 2, then
JC(EXE)) & Q(E))

« However, by the Shioda-Mitani condition, £ X E is isomorphic to various other products
E, X E, with
End(E,) = End(E,) = End(E) and [E]* = [E,][E,]
 If [E] € CI(End(E)) has order 4, then
EXE>~C/End(E) X C(EXE)
* By our field of definition condition,

QU(C(E X E))) = Q((C/End(E)))

« This means E X Eand C(E X E) can both be defined over a field smaller than the ring class
field

Theorem (Devadas-Lieblich). If &/ = E X E'is an abelian surface of maximal Picard rank
such that such that End(£) = End(£") = R, then there exist elliptic curves E|, E, with

9 ~ E, X E, such that Q(j(E,)) = Q((E,)) = Q(j(C(L))) if and only if the group element
[C()] € CI(R) has order < 2.
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Conclusion

In summary

ForX = £, X E, X ... X E,_ pairwise isogenous CM elliptic curves with
End(E;) = R;, then € (X)) is an elliptic curve with CM by
Ri+...+R, CK=Endlf) &, Q

For m < n we have

¢ (X) H ¢, (Ei1 X ... X Eim>
i|<i)<...<i,
which is also a complex abelian variety of maximal Picard number

This analytic construction produces objects which are “very algebraic”!

We gave examples of some abelian surfaces &/ over a number field L so that

J(C(de) €L

» This means though € (&) is algebraic (it is an abelian variety), the construction
of € (A ) is not quite algebraic
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Conclusion

Future work

By the Shioda-Mitani condition, an abelian surface of maximal Picard number
9 = E, X E, is described up to isomorphism by ¢ (&) and its degree of
primitivity.

* For primitive Picard-maximal abelian surfaces, we can fully describe the minimal

field over which &/, €(&f) can both be defined. What about the non-primitive
case?

e Can we extend this field of definition condition further to Kummer surfaces and
general singular K3 surfaces?

Are there complex surfaces such that €(S) is a complex torus but not an abelian
variety?

Beauville computed C(C; X C,) up to isogeny for products of curves with maximal
Picard number

 Can we compute these C(C; X C,) up to isomorphism? What about
¢ (C, X...x C,)) for products of n curves?
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Conclusion
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