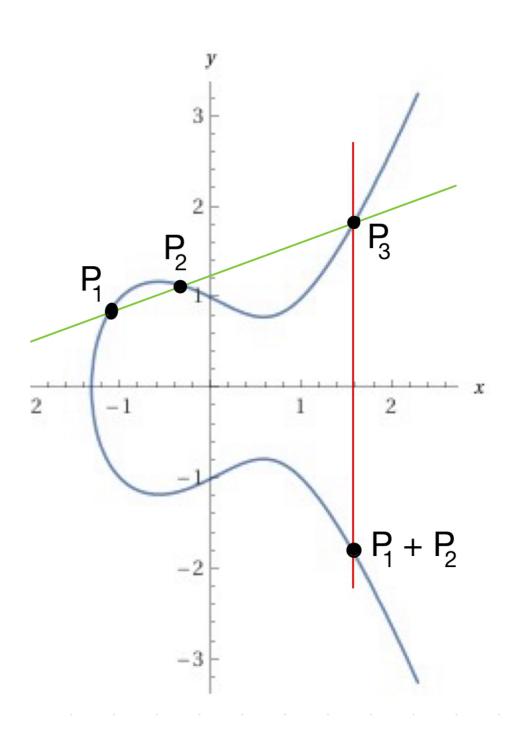
Higher-weight Jacobians

Generalizing the notion of adding points on a curve

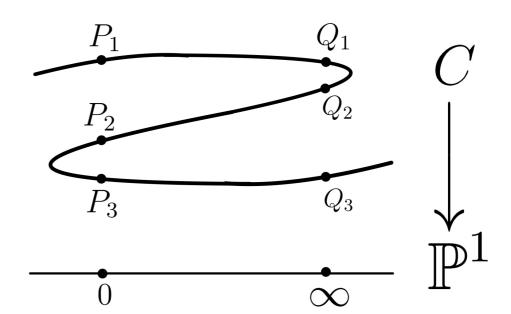
Elliptic curves in algebraic geometry

- In algebraic geometry we study algebraic varieties, which are the set of solutions of a system of polynomial equations
- An elliptic curve is the solution set of an equation $y^2 = x^3 + ax + b$
- In fact elliptic curves are abelian varieties, since we can "add" points, giving it the structure of an abelian group
- These important objects of number theory have applications in cryptography, integer factorization, and primality proving



Jacobian of a complex curve

- For more general curves we cannot add points as with an elliptic curve
- Instead, we can embed the curve C in a higher-dimensional abelian variety known as the **Jacobian variety** $\mathrm{Jac}(C)$



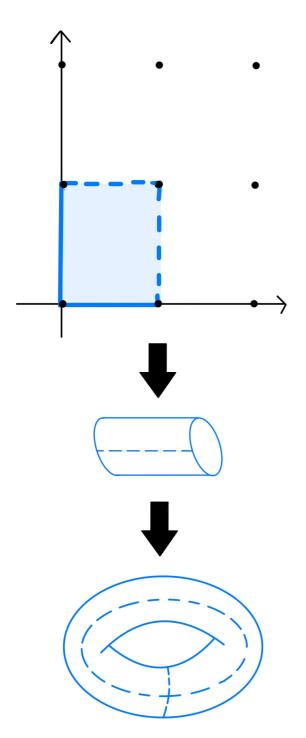
• Elements of Jac(C) are **degree 0 divisors**—abstract "combinations of points"

$$\sum_{P \in C} n_P P \text{ such that } \sum_{P \in C} n_P = 0$$

modulo the relation of rational equivalence $(P_1 + P_2 + P_3 = Q_1 + Q_2 + Q_3)$

- Geometrically, we can give this abelian group the structure of a variety
- In addition to this algebraic definition, we can give an analytic construction of the Jacobian variety as a complex torus

Complex abelian varieties and tori



- A complex torus \mathbb{C}^d/Γ is the quotient of a complex vector space \mathbb{C}^d by a discrete subgroup or lattice Γ
- Any complex abelian variety can be realized as a complex torus which admits an algebraic structure
- For d=1 every torus is algebraic, so \mathbb{C}/Λ is always isomorphic to an elliptic curve over \mathbb{C}
- This is not true in higher dimensions!

Analytic construction of the Jacobian

- A variety V is equipped with a **topology**—a collection of subsets termed as open subsets—and a **structure sheaf** \mathcal{O}_V of rings, associating a ring to each open subset compatibly with restriction of subsets
- Given a complex curve C we have a short exact sequence of sheaves (called the exponential sequence)

$$\mathbb{Z} \hookrightarrow \mathscr{O}_C \overset{\exp}{\twoheadrightarrow} \mathscr{O}_C^{\times}$$

This gives rise to a long exact sequence of sheaf cohomology groups

$$0 \to \mathrm{H}^0(C, \mathbb{Z}) \to \mathrm{H}^0(C, \mathcal{O}_C) \to \mathrm{H}^0(C, \mathcal{O}_C^{\times}) \to \mathrm{H}^1(C, \mathbb{Z}) \to \mathrm{H}^1(C, \mathcal{O}_C) \to \dots$$

- The cokernel of $\mathrm{H}^1(C,\mathbb{Z}) \to \mathrm{H}^1(C,\mathscr{O}_C)$ is a complex torus \mathbb{C}^g/Γ
- This torus gives an analytic construction of the Jacobian variety
- This torus is algebraic, which makes it an abelian variety

Higher dimensional complex varieties

- The Jacobian of a complex curve can be generalized to give an algebraic complex torus structure to the cokernel of $\mathrm{H}^1(X,\mathbb{Z}) \to \mathrm{H}^1(X,\mathscr{O}_X)$ for higher-dimensional X
- If X is smooth and projective, this construction is a complex torus because the image of $H^1(X,\mathbb{Z})$ in $H^1(X,\mathscr{O}_X)$ is a **discrete subgroup** of the complex vector space $H^1(X,\mathscr{O}_X)$
- Is the cokernel of $H^m(X,\mathbb{Z}) \to H^m(X,\mathcal{O}_X)$ also a complex torus for m > 1?
- If m > 1,
 - 1. the image of $\mathrm{H}^m(X,\mathbb{Z})$ in $\mathrm{H}^m(X,\mathscr{O}_X)$ is **not necessarily discrete**, so the cokernel of $\mathrm{H}^m(X,\mathbb{Z}) \to \mathrm{H}^m(X,\mathscr{O}_X)$ is **not** necessarily a complex torus;
 - 2. even if it is a complex torus, it is **not** necessarily algebraic

Degree 2: the Brauer-Jacobian

- The cokernel $\mathfrak{C}(X)$ of $\mathrm{H}^2(X,\mathbb{Z}) \to \mathrm{H}^2(X,\mathscr{O}_X)$ is a complex torus exactly when the kernel has maximal rank—meaning X is "very algebraic" (has many line bundles)
- We say that X which satisfies the above has **maximal Picard number**
- The torsion subgroup of $\mathfrak{C}(X)$ is isomorphic to the Brauer group $\mathrm{Br}(X)$, so we call $\mathfrak{C}(X)$ the **Brauer-Jacobian**
- $\mathfrak{C}(X)$ has been studied by Beauville '14, Shioda & Mitani '74, among others
- When X is an abelian variety, $\mathfrak{C}(X)$ has been computed up to **isogeny** (a surjective morphism with finite kernel)
- Furthermore, in this case $\mathfrak{C}(X)$ is algebraic (an abelian variety)

Products of elliptic curves

- Recall: an **elliptic curve** is a 1-dimensional abelian variety, which is often described as the solution set of an equation $y^2 = x^3 + ax + b$
- We say the elliptic curve has **complex multiplication (CM)** if it has more endomorphisms than just multiplication by $\mathbb Z$

Theorem (Schoen). A complex abelian variety X of maximal Picard rank is (not uniquely) isomorphic to a **product of pairwise** isogenous CM elliptic curves

$$X \cong E_1 \times E_2 \times \ldots \times E_n$$

• In the n=2 case, Shioda and Mitani show that $\mathfrak{C}(E_1\times E_2)$ is an elliptic curve that is isogenous to both E_1 and E_2

Our results

• Theorem (Schoen). A complex abelian variety X of maximal Picard rank is (not uniquely) isomorphic to a **product of pairwise isogenous CM elliptic curves**

$$X \cong E_1 \times E_2 \times \ldots \times E_n$$

• In the n=2 case, Shioda and Mitani show that $\mathfrak{C}(E_1\times E_2)$ is an elliptic curve that is isogenous to both E_1 and E_2

- My work with M. Lieblich uses this concrete description of X to compute $\mathfrak{C}(X)$ up to **isomorphism**, via number theory
- We proved that for such X, the cokernel of $\mathrm{H}^m(X,\mathbb{Z}) \to \mathrm{H}^m(X,\mathscr{O}_X)$ for **all** $m \leq n$ is also a complex abelian variety of maximal Picard number, which we call the **weight** m **Jacobian** $\mathfrak{C}_m(X)$
- We also proved conditions on the **field of definition** for $\mathfrak{C}_2(E_1 \times E_2)$ in certain cases, and we plan to prove similar conditions in the general case

Roadmap

- Number theory
 - Elliptic curves over $\mathbb C$ and lattices
 - Complex multiplication and the ideal class group
- Computing higher-weight Jacobians
- Fields of definition
 - Issues with extending to fields other than $\mathbb C$
- Conclusions and future work

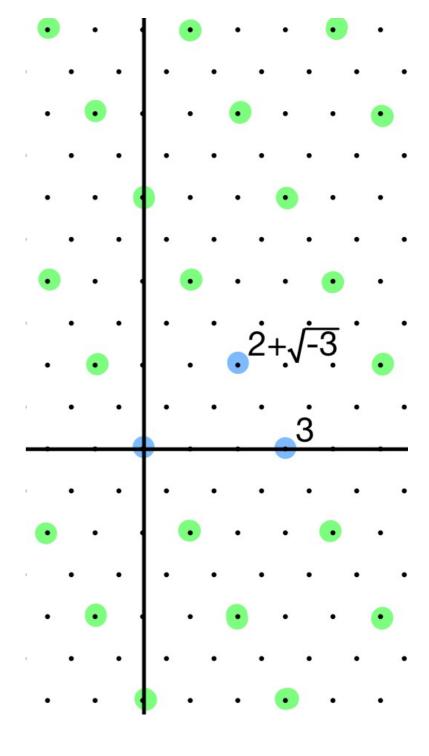
Number theory

Lattices in the complex numbers

- Any complex elliptic curve E is isomorphic as a Lie group to a torus \mathbb{C}/Γ for a discrete subgroup or lattice $\Gamma \subseteq \mathbb{C}$
- Any lattice in \mathbb{C} can be written as the set of \mathbb{Z} -linear combinations of some $v, w \in \mathbb{C}$ with $v/w \notin \mathbb{R}$:

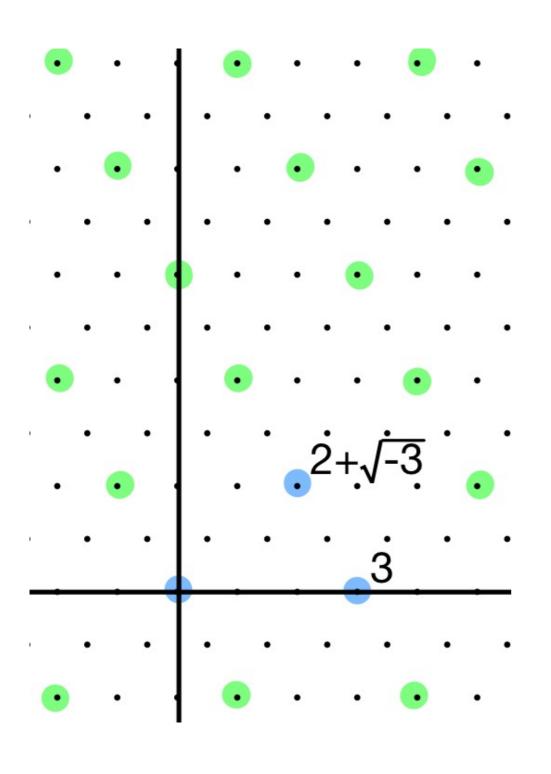
$$\Gamma = \mathbb{Z}v + \mathbb{Z}w = \langle v, w \rangle$$

- An **isomorphism** of elliptic curves $E\cong \mathbb{C}/\Gamma, E'\cong \mathbb{C}/\Gamma'$ corresponds to a **homothety** (rotation/scaling) of lattices, which is some $\alpha\in\mathbb{C}$ with $\alpha\Gamma=\Gamma'$
- An isogeny of elliptic curves corresponds to $\alpha\in\mathbb{C}$ with $\alpha\Gamma\subseteq\Gamma'$
- Two lattices are isogenous if one is homothetic to a sublattice of the other



Number theory

Complex multiplication



 The endomorphism ring of a lattice is the ring of isogenies to itself

$$\operatorname{End}(\Gamma) = \{ \alpha \in \mathbb{C} : \alpha \Gamma \subseteq \Gamma \}$$

- If $\operatorname{End}(\Gamma)$ is larger than $\mathbb Z$ we say that the lattice/elliptic curve has **complex** multiplication (CM) by $\operatorname{End}(\Gamma)$
- For $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$ we have $\operatorname{End}(\Lambda) = \mathbb{Z}[3\sqrt{-3}]$
- Λ is homothetic to $3\Lambda = \langle 9, 6 + 3\sqrt{-3} \rangle \subseteq \mathbb{Z}[3\sqrt{-3}],$ which is an ideal of $\mathbb{Z}[3\sqrt{-3}]$

Number theory

CM elliptic curves and the class group

- If $E \cong \mathbb{C}/\Gamma$ has CM, then Γ is homothetic to an ideal of $\operatorname{End}(\Gamma) = \operatorname{End}(E)$
- Think of Γ as a (fractional) ideal of $R=\operatorname{End}(\Gamma)$, and homothety as multiplication by an element of R- or by a principal ideal
- The **ideal class group** $\mathrm{Cl}(R)$ is the group of (invertible) fractional ideals of R modulo principal ideals (R is the identity element)
- Homothety classes of lattices with CM by R correspond to elements of $\mathrm{Cl}(R)$
- We use $[E]=[\Gamma]\in \mathrm{Cl}(R)$ for the group element corresponding to the homothety/isomorphism class of $E\cong\mathbb{C}/\Gamma$

Roadmap

- Number theory
- Computing higher-weight Jacobians
 - Lattices and the Brauer-Jacobian (2-Jacobian)
 - Self-product example $E \times E$
 - 2-Jacobian of an abelian surface
 - The *n*-Jacobian of an abelian *n*-fold
 - Computing the *m*-Jacobian
- Fields of definition
 - Issues with extending to fields other than $\mathbb C$
- Conclusions and future work

Isogeny of CM lattices

• Recall: a complex abelian variety X of maximal Picard number is isomorphic to a **product of pairwise isogenous CM elliptic** curves (Schoen)

$$X \cong E_1 \times E_2 \times \ldots \times E_n$$

- What does this mean in terms of lattices?
- If Γ is a CM lattice with $R=\operatorname{End}(\Gamma)$, then the **endomorphism** algebra $R\otimes_{\mathbb{Z}}\mathbb{Q}$ is an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$
- In fact, R is a subring of the endomorphism algebra $K=R\otimes_{\mathbb{Z}}\mathbb{Q}$
- Two CM elliptic curves $E_1,\,E_2$ are isogenous if and only if the endomorphism algebras are the same

Lattices and the 2-Jacobian

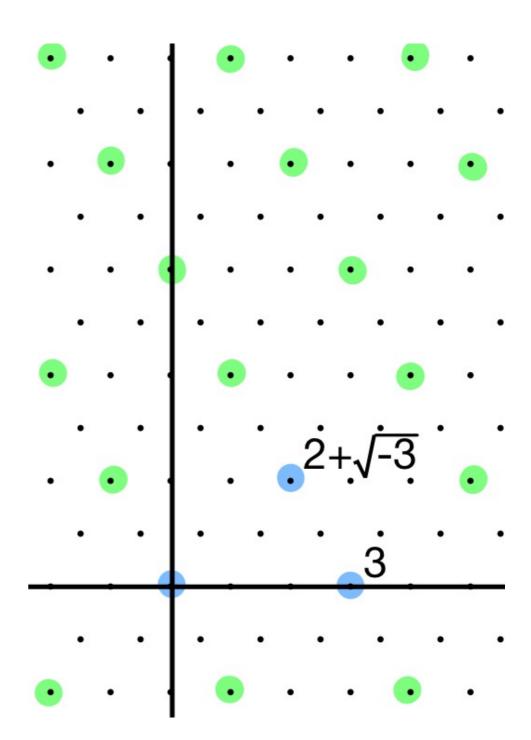
- Shioda and Mitani found that $\mathfrak{C}(E_1 \times E_2)$ is a CM elliptic curve isogenous to both E_1, E_2
- To compute $\mathfrak{C}(E_1 \times E_2)$ up to **isomorphism**, we'll find $R = \operatorname{End}(\mathfrak{C}(E_1 \times E_2))$ and an element in $\operatorname{Cl}(R)$ for the isomorphism class $[\mathfrak{C}(E_1 \times E_2)]$
- It's known that if $E_i\cong \mathbb{C}/\langle v_i,w_i\rangle$ and $v_1v_2,v_1w_2,w_1v_2,w_1w_2\in \mathbb{C}$ span a lattice Γ then $\mathfrak{C}(E_1\times E_2)\cong \mathbb{C}/\Gamma$

Self-product example

- Consider the elliptic curve $E = \mathbb{C}/\Lambda$ corresponding to the lattice $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$
- $\mathfrak{C}(E \times E)$ is isomorphic to an elliptic curve $E' \cong \mathbb{C}/\Lambda'$
- Λ' is spanned by
 - $3^2 = 9$

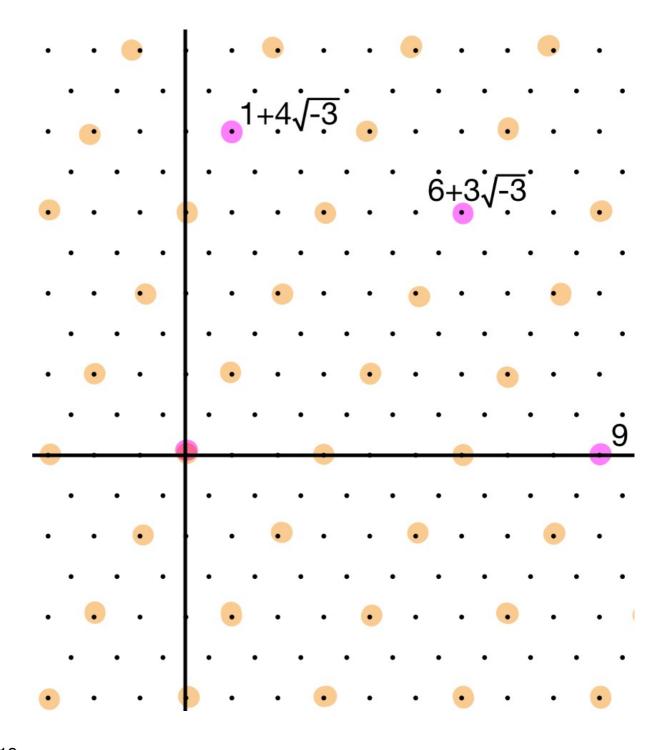
•
$$3 \cdot (2 + \sqrt{-3}) = 6 + 3\sqrt{-3}$$

•
$$(2+\sqrt{-3})^2 = 1+4\sqrt{-3}$$



Self-product example

- $\{9,6+3\sqrt{-3},1+4\sqrt{-3}\}$ span the lattice $\Lambda'=\langle 3,1+\sqrt{-3}\rangle$
- Hence $\mathfrak{C}(E \times E)$ is isomorphic to $E' = \mathbb{C}/\Lambda'$
- Λ , Λ' are **not homothetic**, so $E \ncong E' \cong \mathfrak{C}(E \times E)$
- However, they are isogenous; both have endomorphism ring $\mathbb{Z}[3\sqrt{-3}]$



2-Jacobian of an abelian surface

- The easiest case to compute the isomorphism class $[\mathfrak{C}(E_1 \times E_2)]$ is when $\operatorname{End}(E_1) = \operatorname{End}(E_2) = R$
- In that case, $\mathfrak{C}(E_1\times E_2)$ also has CM by R and $[\mathfrak{C}(E_1\times E_2)]=[E_1][E_2]\in \mathrm{Cl}(R)$
- More generally, if $\operatorname{End}(E_i)=R_i$, then we can show $\mathfrak{C}(E_1\times E_2)$ has CM by $R_0:=R_1+R_2\subseteq K=R_i\otimes_{\mathbb{Z}}\mathbb{Q}$
- Letting $E_i\cong \mathbb{C}/\Gamma_i$ we find that $\Gamma_i\otimes_{R_i}R_0$ is a lattice with CM by R_0 and

$$[\mathfrak{C}(E_1 \times E_2)] = [\Gamma_1 \otimes_{R_1} R_0][\Gamma_2 \otimes_{R_2} R_0] \in \mathrm{Cl}(R_0)$$

The *n*-Jacobian of an abelian *n*-fold

• Recall: a complex abelian variety X of maximal Picard number is isomorphic to a product of pairwise isogenous CM elliptic curves (Schoen)

$$X \cong E_1 \times E_2 \times \ldots \times E_n$$

- Since X has maximal Picard rank, $\mathfrak{C}(X)$ is a complex torus
- For $m \ge 2$, the cokernel of $\mathrm{H}^m(X,\mathbb{Z}) \to \mathrm{H}^m(X,\mathscr{O}_X)$ is also a complex torus, the m-Jacobian $\mathfrak{C}_m(X)$
- If n=m, then we find similarly that $\mathfrak{C}_n(E_1\times\ldots\times E_n)$ is an elliptic curve with CM by R, where R is

$$R_1 + \ldots + R_n \subseteq K = R_i \otimes_{\mathbb{Z}} \mathbb{Q}$$
, for $R_i = \operatorname{End}(E_i)$

• We can compute $\mathfrak{C}_n(X)$ up to isomorphism as

$$[\mathfrak{C}_n(X)] = \prod_{i=1}^n [\Gamma_i \otimes_{R_i} R] \in \mathrm{Cl}(R), \text{ for } \Gamma_i \text{ such that } E_i \cong \mathbb{C}/\Gamma_i$$

Computing the *m*-Jacobian

• For m < n, we find that the **m-Jacobian** of X is

$$\mathfrak{C}_m(X) \cong \prod_{i_1 < i_2 < \dots < i_m} \mathfrak{C}_m \left(E_{i_1} \times \dots \times E_{i_m} \right)$$

- Each $\mathfrak{C}_m(E_{i_1} \times \ldots \times E_{i_m})$ is a CM elliptic curve isogenous to the E_i
- $\mathfrak{C}_m(X)$ is a product of pairwise isogenous CM elliptic curves

Theorem (Devadas-Lieblich). If X is a complex abelian variety of maximal Picard rank, the m-Jacobian $\mathfrak{C}_m(X)$ for any $2 \le m \le \dim(X)$ is also a complex abelian variety of maximal Picard rank.

• In particular, $\mathfrak{C}_{n-1}(X)$ is a complex abelian variety of the same dimension n

Roadmap

- Number theory
- Computing higher-weight Jacobians
- Fields of definition
 - Issues with extending to fields other than $\mathbb C$
 - Return to self-product example
 - $\mathfrak{C}(E \times E)$ cannot be defined over the minimal field of definition of E
 - Elliptic curves and the ring class field
 - Give a condition on the fields of definition of two elliptic curves with class field theory
 - Finding other interesting examples
- Conclusions and future work

Issues extending to other fields

- Question: is there an analogue of higher-weight Jacobians for varieties of maximal Picard number over fields other than C?
- For example, if we have an abelian surface \mathscr{A} over a number field L, is there **an elliptic curve** $E_{\mathscr{A}}$ **over** L with some nice relationship to the Brauer group of \mathscr{A} ?
- We would expect that $E_{\mathscr{A}}\otimes \mathbb{C}\cong \mathfrak{C}(\mathscr{A}_{\mathbb{C}})$, but sometimes **no** such $E_{\mathscr{A}}$ over L exists!
- This means though $\mathfrak{C}(\mathscr{A}_{\mathbb{C}})$ is algebraic (it is an abelian variety), the construction of $\mathfrak{C}(\mathscr{A}_{\mathbb{C}})$ is **not-so-algebraic**

j-invariants of elliptic curves

• For a complex elliptic curve E defined by an equation $y^2=x^3+ax+b$, the j-invariant is

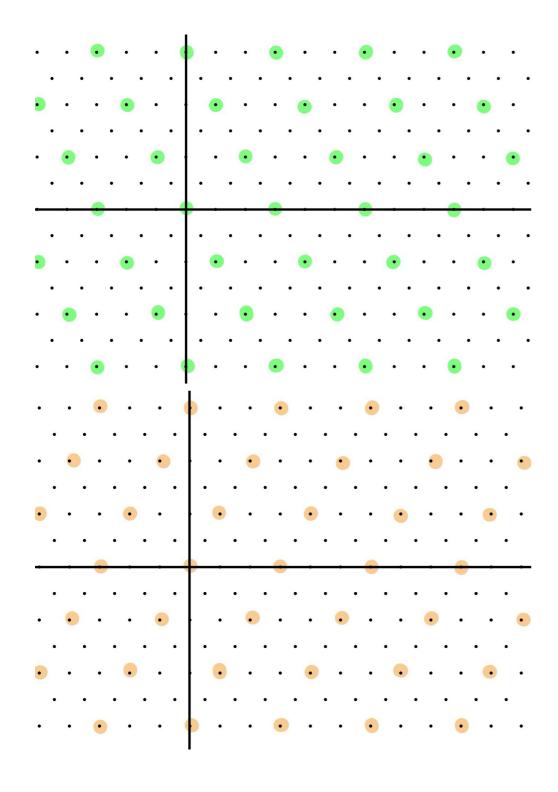
$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

• A complex elliptic curve is determined up to isomorphism by its j-invariant, and E is always isomorphic over $\mathbb C$ to the elliptic curve defined by

$$y^{2} = x^{3} + \frac{3j(E)}{1728 - j(E)}x + \frac{2j(E)}{1728 - j(E)}$$

- $\mathbb{Q}(j(E))$ is the "smallest" number field over which E can be defined
- We will give an example of an abelian surface \mathscr{A} over a number field L so that $j(\mathfrak{C}(\mathscr{A}_{\mathbb{C}})) \not\in L$

Return to self-product example



- Recall the elliptic curve $E = \mathbb{C}/\Lambda$ corresponding to the lattice $\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$
- $\mathfrak{C}(E \times E)$ is isomorphic to an elliptic curve $E' = \mathbb{C}/\Lambda'$ with $\Lambda' = \langle 3, 1 + \sqrt{-3} \rangle$
- Λ, Λ' are **not homothetic** so $E \ncong E'$
- By computation, $\mathbb{Q}(j(E)) = \mathbb{Q}(\zeta_3\sqrt[3]{2})$ and $\mathbb{Q}(j(E')) = \mathbb{Q}(\zeta_3\sqrt[3]{2})$
- Since $j(\mathfrak{C}(E \times E)) \notin \mathbb{Q}(j(E))$, we can define $E \times E$ over this field $\mathbb{Q}(j(E)) = \mathbb{Q}(\zeta_3\sqrt[3]{2})$, but we can't define its 2-Jacobian!

Self-product example and the class group

- We will find other examples of an elliptic curve E such that E can be defined over a number field L but $\mathfrak{C}(E \times E)$ cannot, using the class group of $\operatorname{End}(E)$
- Let's look at Cl(End(E)) for our previous example $E=\mathbb{C}/\Lambda$ where $\Lambda=\langle 3,2+\sqrt{-3}\rangle$
- In this case, $\operatorname{End}(E)=\mathbb{Z}[3\sqrt{-3}]$ and $\operatorname{Cl}(\mathbb{Z}[3\sqrt{-3}])\cong\mathbb{Z}/3\mathbb{Z}$
- Note that $\mathbb{Z}[3\sqrt{-3}] = \langle 1, 3\sqrt{-3} \rangle$ is the lattice corresponding to the identity element and $[E], [E]^2 = [\mathfrak{C}(E \times E)] = [E']$ are the non-identity elements
- $\mathbb{Q}(j(\mathbb{C}/\langle 1, 3\sqrt{-3}\rangle)) = \mathbb{Q}(\sqrt[3]{2})$, which is distinct from both $\mathbb{Q}(j(E))$, $\mathbb{Q}(j(E'))$
- · All elements of the class group have different minimal fields of definition

Elliptic curves and the ring class field

- For two CM elliptic curves E_1, E_2 , we want to describe when $j(E_2) \in \mathbb{Q}(j(E_1))$
- For any elliptic curve E with CM by $R\subseteq R\otimes_{\mathbb{Z}}\mathbb{Q}=K$ the extension K(j(E)) is equal to the ring class field L_R
- L_R is a degree $n = |\operatorname{Cl}(R)|$ extension of K
- We use class field theory to prove a field of definition condition:

Proposition (Devadas-Lieblich). If $E_1,\,E_2$ are two elliptic curves with CM by R then either

(i)
$$[E_1]^2=[E_2]^2\in {\rm Cl}(R)$$
 and $\mathbb{Q}(j(E_1))=\mathbb{Q}(j(E_2))$ is a degree n extension of \mathbb{Q} , or

(ii)
$$j(E_2) \notin \mathbb{Q}(j(E_1))$$
 and $\mathbb{Q}(j(E_1), j(E_2)) = L_R$

Other interesting examples

- We can find many cases of an elliptic curve E such that E can be defined over a number field L but $\mathfrak{C}(E\times E)$ cannot
- If E is a CM elliptic curve such that the order of $[E] \in \operatorname{Cl}(\operatorname{End}(E))$ is greater than 2, then

$$[\mathfrak{C}(E \times E)]^2 = [E]^4 \neq [E]^2$$

- This means that $j(\mathfrak{C}(E \times E)) \notin \mathbb{Q}(j(E)) = L$ by our field of definition condition
- It is still true that both j(E) and $j(\mathfrak{C}(E\times E))\in L_{\mathrm{End}(E)}$, the ring class field

Isomorphism classes of abelian surfaces

• To determine the "field of definition" of an abelian surface of maximal Picard rank $\mathscr{A}=E_1\times E_2$ we must determine when $\mathscr{A}\cong\mathscr{A}'$ for another abelian surface of maximal Picard rank

```
Theorem (Shioda-Mitani). If E_1, \ldots, E_4 are pairwise isogenous CM elliptic curves, then E_1 \times E_2 \cong E_3 \times E_4 if and only if (i) \operatorname{End}(E_1) \cap \operatorname{End}(E_2) = \operatorname{End}(E_3) \cap \operatorname{End}(E_4) (ii) \operatorname{End}(E_1) + \operatorname{End}(E_2) = \operatorname{End}(E_3) + \operatorname{End}(E_4) (iii) \operatorname{\mathfrak{C}}(E_1 \times E_2) \cong \operatorname{\mathfrak{C}}(E_3 \times E_4)
```

• So in particular, if $\operatorname{End}(E_1) = \operatorname{End}(E_2) = R$ then $E_1 \times E_2 \cong E_3 \times E_4$ if and only if both (1) $R = \operatorname{End}(E_3) = \operatorname{End}(E_4)$ (2) $\mathfrak{C}(E_1 \times E_2) \cong \mathfrak{C}(E_3 \times E_4)$, or $[E_1][E_2] = [E_3][E_4] \in \operatorname{Cl}(R)$

Interesting examples, part 2

- If E is a CM elliptic curve such that the order of $[E] \in Cl(End(E))$ is greater than 2, then $j(\mathfrak{C}(E \times E)) \notin \mathbb{Q}(j(E))$
- However, by the **Shioda-Mitani condition**, $E \times E$ is isomorphic to various other products $E_1 \times E_2$ with

$$\text{End}(E_1) = \text{End}(E_2) = \text{End}(E) \text{ and } [E]^2 = [E_1][E_2]$$

• If $[E] \in Cl(End(E))$ has order 4, then

$$E \times E \cong \mathbb{C}/\mathrm{End}(E) \times \mathfrak{C}(E \times E)$$

By our field of definition condition,

$$\mathbb{Q}(j(\mathfrak{C}(E \times E))) = \mathbb{Q}(j(\mathbb{C}/\text{End}(E)))$$

• This means $E \times E$ and $\mathfrak{C}(E \times E)$ can both be defined over a field smaller than the ring class field

Theorem (Devadas-Lieblich). If $\mathscr{A}=E\times E'$ is an abelian surface of maximal Picard rank such that $\operatorname{End}(E)=\operatorname{End}(E')=R$, then there exist elliptic curves E_1,E_2 with $\mathscr{A}\simeq E_1\times E_2$ such that $\mathbb{Q}(j(E_1))=\mathbb{Q}(j(E_2))=\mathbb{Q}(j(\mathfrak{C}(\mathscr{A})))$ if and only if the group element $[\mathfrak{C}(\mathscr{A})]\in\operatorname{Cl}(R)$ has order ≤ 2 .

Conclusion

In summary

- For $X \cong E_1 \times E_2 \times \ldots \times E_n$ pairwise isogenous CM elliptic curves with $\operatorname{End}(E_i) = R_i$, then $\mathfrak{C}_n(X)$ is an elliptic curve with CM by $R_1 + \ldots + R_n \subseteq K = \operatorname{End}(E_i) \otimes_{\mathbb{Z}} \mathbb{Q}$
- For m < n we have

$$\mathfrak{C}_m(X) \cong \prod_{i_1 < i_2 < \dots < i_m} \mathfrak{C}_m \left(E_{i_1} \times \dots \times E_{i_m} \right)$$

which is also a complex abelian variety of maximal Picard number

- This analytic construction produces objects which are "very algebraic"!
- We gave examples of some abelian surfaces $\mathscr A$ over a number field L so that $j(\mathfrak C(\mathscr A_{\mathbb C})) \not\in L$
- This means though $\mathfrak{C}(\mathscr{A}_{\mathbb{C}})$ is algebraic (it is an abelian variety), the construction of $\mathfrak{C}(\mathscr{A}_{\mathbb{C}})$ is **not quite algebraic**

Conclusion

Future work

- By the Shioda-Mitani condition, an abelian surface of maximal Picard number $\mathscr{A} = E_1 \times E_2$ is described up to isomorphism by $\mathfrak{C}(\mathscr{A})$ and its **degree of primitivity**.
 - For primitive Picard-maximal abelian surfaces, we can fully describe the minimal field over which $\mathscr{A}, \mathfrak{C}(\mathscr{A})$ can both be defined. What about the non-primitive case?
 - Can we extend this field of definition condition further to Kummer surfaces and general singular K3 surfaces?
- Are there complex surfaces such that $\mathfrak{C}(S)$ is a complex torus but not an abelian variety?
- Beauville computed $\mathfrak{C}(C_1 \times C_2)$ up to isogeny for products of curves with maximal Picard number
 - Can we compute these $\mathfrak{C}(C_1 \times C_2)$ up to isomorphism? What about $\mathfrak{C}_m(C_1 \times \ldots \times C_n)$ for products of n curves?

Conclusion

Thanks and acknowledgments

- This talk is based on joint work with my NSF postdoc mentor Max Lieblich
- This talk is based on work supported by the National Science Foundation under Award No. 2102960

ConclusionSelected bibliography

Arnaud Beauville. "Some surfaces with maximal Picard number". In: Journal de l'École polytechnique—Mathématiques 1 (2014), pp. 101–116.

Christina Birkenhake and Herbert Lange. Complex abelian varieties. Vol. 6. Springer, 2004.

David A Cox. Primes of the form $x^2 + ny^2$: Fermat, class field theory, and complex multiplication. Vol. 34. John Wiley & Sons, 2011.

Chad Schoen. "Produkte Abelscher Varietäten und Moduln über Ordnungen." In: (1992).

Joseph H Silverman. The arithmetic of elliptic curves. Vol. 106. Springer, 2009.

Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves. Vol. 151. Springer Science & Business Media, 1994.

Tetsuji Shioda and Naoki Mitani. "Singular abelian surfaces and binary quadratic forms". In: Classification of algebraic varieties and compact complex manifolds. Springer, 1974, pp. 259–287.