A Noetherian counterexample to Theorem B for Henselian schemes

Sheela Devadas

The blog post [Jon18] by Johan de Jong describes a non-Noetherian counterexample to Theorem B for Henselian schemes.

Example 1. Let (R, J) be the Henselization of the pair $(\mathbf{C}[x, y], (xy(x+y-1)))$.

If we let A be the integral closure of R in the algebraic closure $K = \overline{\mathbf{C}(x, y)}$ and let I = JA = xy(x + y - 1)A, then the pair (A, I) is Henselian as the map $R \to A$ is integral.

The cohomology group $\mathrm{H}^{1}(\mathrm{Sph}(A, I), \mathscr{O}_{\mathrm{Sph}(A, I)})$ is shown to be nonzero in [Jon18]. For a more detailed proof that the cohomology is nonzero, see [Dev22, Proposition 3.1.15].

Proposition 2. There exists a Noetherian Henselian pair (R_0, I_0) such that the cohomology $\mathrm{H}^1(\mathrm{Sph}(R_0, I_0), \mathscr{O}_{\mathrm{Sph}(R_0, I_0)})$ is nonzero. Thus we have a Noetherian counterexample to Theorem B for Henselian schemes.

Proof. Let R, J, A, I be as in Example 1. We can write $A = \varinjlim R_i$ as the filtered direct limit of its subalgebras R_i which are module-finite over R (and hence Noetherian).

If $I_i = JR_i = xy(x+y-1)R_i$, then each pair (R_i, I_i) is Henselian since the maps $R \to R_i$ are integral. Then $Sph(A, I) = \lim_{i \to \infty} Sph(R_i, I_i)$, so we can apply [Dev23, Lemma A.2] to "pull the limit into the cohomology" and deduce

$$\lim_{i \to \infty} \mathrm{H}^{1}(\mathrm{Sph}(R_{i}, I_{i}), \mathscr{O}_{\mathrm{Sph}(R_{i}, I_{i})}) = \mathrm{H}^{1}(\mathrm{Sph}(A, I), \mathscr{O}_{\mathrm{Sph}(A, I)}) \neq 0.$$

Thus for some i_0 we have $\mathrm{H}^1(\mathrm{Sph}(R_{i_0}, I_{i_0}), \mathscr{O}_{\mathrm{Sph}(R_{i_0}, I_{i_0})}) \neq 0.$

References

- [Dev22] Sheela Devadas. Henselian schemes in positive characteristic. 2022. arXiv: 2212. 08644 [math.AG].
- [Dev23] Sheela Devadas. GAGA for Henselian schemes. 2023. arXiv: 2306.01722 [math.AG].
- [Jon18] A. J. de Jong. No Theorem B for henselian affine schemes Stacks Project Blog. 2018. URL: https://www.math.columbia.edu/~dejong/wordpress/?p=4262.